Vector Differential Equations: Nondefective Coefficient Matrix

Math 240 - Calculus III

Summer 2015, Session II
Wednesday, July 22, 2015

1. Solving linear systems by diagonalization Real eigenvalues
Complex eigenvalues

Solving linear systems by diagonalization Real e-vals Complex e-vals

Introduction

The results discussed yesterday apply to any old vector differential equation

$$
\mathrm{x}^{\prime}=A \mathrm{x}
$$

In order to make some headway in solving them, however, we must make a simplifying assumption:

The coefficient matrix A consists of real constants.

Diagonalization

Recall that an $n \times n$ matrix A may be diagonalized if and only if it is nondefective.

When this happens, we can solve the homogeneous vector differential equation

$$
\mathrm{x}^{\prime}=A \mathrm{x}
$$

If $S^{-1} A S=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, then

$$
\mathbf{x}=S \mathbf{y}, \text { where } \mathbf{y}=\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
c_{2} e^{\lambda_{2} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

Example

Solve the linear system

$$
\begin{aligned}
& x_{1}^{\prime}=2 x_{1}+x_{2} \\
& x_{2}^{\prime}=-3 x_{1}-2 x_{2}
\end{aligned}
$$

1. Turn it into the vector differential equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \text { where } A=\left[\begin{array}{rr}
2 & 1 \\
-3 & -2
\end{array}\right] .
$$

2. The characteristic polynomial of A is $\lambda^{2}-1$.
3. Eigenvalues are $\lambda= \pm 1$.
4. Eigenvectors are

$$
\begin{aligned}
\lambda_{1}=1: & \mathbf{v}_{1}=(-1,1) \\
\lambda_{2}=-1: & \mathbf{v}_{2}=(-1,3) .
\end{aligned}
$$

5. We have

$$
\mathbf{y}=\left[\begin{array}{c}
c_{1} e^{t} \\
c_{2} e^{-t}
\end{array}\right], \text { so } \mathbf{x}=\left[\begin{array}{rr}
-1 & -1 \\
1 & 3
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
-c_{1} e^{t}-c_{2} e^{-t} \\
c_{1} e^{t}+3 c_{2} e^{-t}
\end{array}\right] .
$$

Vector formulation

The change of basis matrix S is

$$
S=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are n linearly independent eigenvectors of A. Hence,

$$
\begin{aligned}
\mathbf{x}=S \mathbf{y} & =c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{v}_{n} \\
& =c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}
\end{aligned}
$$

Check if these n solutions are linearly independent:

$$
\begin{aligned}
W\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] & =\operatorname{det}\left(\left[\begin{array}{llll}
e^{\lambda_{1} t} \mathbf{v}_{1} & e^{\lambda_{2} t} \mathbf{v}_{2} & \cdots & e^{\lambda_{n} t} \mathbf{v}_{n}
\end{array}\right]\right) \\
& =e^{\left(\lambda_{1}+\cdots+\lambda_{n}\right) t} \operatorname{det}\left(\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\right) \\
& \neq 0
\end{aligned}
$$

They are linearly independent, therefore a fundamental set of solutions.

General solution

Theorem

Suppose A is an $n \times n$ matrix of real constants. If A has n real linearly independent eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (not necessarily distinct), then the vector functions $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ defined by

$$
\mathbf{x}_{k}(t)=e^{\lambda_{k} t} \mathbf{v}_{k}, \quad \text { for } k=1,2, \ldots, n
$$

are a fundamental set of solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$ on any interval. The general solution is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}
$$

Example

Find the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ if

$$
A=\left[\begin{array}{rrr}
0 & 2 & -3 \\
-2 & 4 & -3 \\
-2 & 2 & -1
\end{array}\right]
$$

1. Characteristic polynomial is $-(\lambda+1)(\lambda-2)^{2}$.
2. Eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=2$.
3. Eigenvectors are

$$
\begin{aligned}
\lambda_{1}=-1: & \mathbf{v}_{1}=(1,1,1) \\
\lambda_{2}=2: & \mathbf{v}_{2}=(1,1,0),
\end{aligned} \quad \mathbf{v}_{3}=(-3,0,2) .
$$

4. Fundamental set of solution is

$$
\mathbf{x}_{1}(t)=e^{-t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{x}_{2}(t)=e^{2 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{x}_{3}(t)=e^{2 t}\left[\begin{array}{r}
-3 \\
0 \\
2
\end{array}\right]
$$

5. So general solution is

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+c_{3} \mathbf{x}_{3}(t)
$$

What happens when A has complex eigenvalues?
If $u=a+i b$ and $v=a-i b$ then

$$
a=\frac{u+v}{2} \quad \text { and } \quad b=\frac{u-v}{2 i}
$$

Theorem
Let $\mathbf{u}(t)$ and $\mathbf{v}(t)$ be real-valued vector functions. If

$$
\mathbf{w}_{1}(t)=\mathbf{u}(t)+i \mathbf{v}(t) \quad \text { and } \quad \mathbf{w}_{2}(t)=\mathbf{u}(t)-i \mathbf{v}(t)
$$

are complex conjugate solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, then

$$
\mathbf{x}_{1}(t)=\mathbf{u}(t) \quad \text { and } \quad \mathbf{x}_{2}(t)=\mathbf{v}(t)
$$

are themselves real valued solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$.

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{c}
\cos t \\
-\sin t
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{2}(t)=\left[\begin{array}{c}
\sin t \\
\cos t
\end{array}\right]
$$

Let's derive the explicit form of the real solutions produced by a pair of complex conjugate eigenvectors.

Suppose $\lambda=a+i b$ is an eigenvalue of A, with $b \neq 0$, corresponding to the eigenvector $\mathbf{r}+i \mathbf{s}$. This produces the complex solution

$$
\begin{aligned}
\mathbf{w}(t) & =e^{(a+i b) t}(\mathbf{r}+i \mathbf{s}) \\
& =e^{a t}(\cos b t+i \sin b t)(\mathbf{r}+i \mathbf{s}) \\
& =e^{a t}(\cos b t \mathbf{r}-\sin b t \mathbf{s})+i e^{a t}(\sin b t \mathbf{r}+\cos b t \mathbf{s})
\end{aligned}
$$

Thus, the two real-valued solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$ are

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{a t}(\cos b t \mathbf{r}-\sin b t \mathbf{s}) \\
& \mathbf{x}_{2}(t)=e^{a t}(\sin b t \mathbf{r}+\cos b t \mathbf{s})
\end{aligned}
$$

Remark

Tu The conjugate eigenvalue $a-i b$ and eigenvector $\mathbf{r}-i$ s would result in the same pair of real solutions.

