Linear Systems of Differential Equations

Math 240 - Calculus III

Summer 2015, Session II
Tuesday, July 21, 2015

1. First order linear systems

Solutions to vector differential equations Beyond first order systems

First order linear systems
where $A(t)$ is an $n \times n$ matrix function and $\mathbf{x}(t)$ and $\mathbf{b}(t)$ are n-vector functions. Also called a vector differential equation.

Example

The linear system

$$
\begin{aligned}
& x_{1}^{\prime}(t)=\cos (t) x_{1}(t)-\sin (t) x_{2}(t)+e^{-t} \\
& x_{2}^{\prime}(t)=\sin (t) x_{1}(t)+\cos (t) x_{2}(t)-e^{-t}
\end{aligned}
$$

can also be written as the vector differential equation

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

where

$$
A(t)=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right], \text { and } \mathbf{b}(t)=\left[\begin{array}{c}
e^{-t} \\
-e^{-t}
\end{array}\right] .
$$

A solution to a vector differential equation will be an element of the vector space $V_{n}(I)$ consisting of column n-vector functions defined on the interval I.

Definition
Suppose $\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \ldots, \mathbf{x}_{n}(t) \in V_{n}(I)$. The Wronskian of these vectors is

$$
W\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right](t)=\left|\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{x}_{1}(t) & \mathbf{x}_{2}(t) & \cdots & \mathbf{x}_{n}(t) \\
\mid & \mid & & \mid
\end{array}\right|
$$

Theorem
If $W\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right](t)$ is nonzero for at least one $t \in I$, then $\left\{\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)\right\}$ is a linearly independent subset of $V_{n}(I)$.

Solutions to homogeneous linear systems

As with linear systems, a homogeneous linear system of differential equations is one in which $\mathbf{b}(t)=0$.

Theorem
If $A(t)$ is an $n \times n$ matrix function that is continuous on the interval I, then the set of all solutions to $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$ is a subspace of $V_{n}(I)$ of dimension n.

Proof.
Up to you. Proof of $\operatorname{dim}=n$ later, if there's time. $\quad \mathcal{Q} . \mathcal{E} . \mathcal{D}$.

If the solution set is a vector space of dimension n, it has a basis.

Definition
Any set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ of n solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$ that is linearly independent on I is called a fundamental set of solutions on I. Any solution may be written in the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

which is called the general solution.

Theorem

If $A(t)$ is an $n \times n$ matrix function that is continuous on an interval I, and $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ is a linearly independent set of solutions to $\mathrm{x}^{\prime}=A \mathrm{x}$ on I, then

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right](t) \neq 0
$$

for every $t \in I$.

The two pieces of the general solution are the particular solution, $\mathbf{x}_{p}(t)$, and the complementary solution, $\mathbf{x}_{c}(t)$.
where $\mathbf{x}_{p}(t)$ is any particular solution.
on I, then every solution to this equation on I is in the form of the general solution

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =\underbrace{c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)}_{\mathbf{x}_{c}(t)}+\mathbf{x}_{p}(t), \\
& +\mathbf{x}_{p}(t)
\end{aligned}
$$

Sometimes, we are interested in one particular solution to a vector differential equation.

Definition
An initial value problem consists of a vector differential equation

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

and an initial condition

$$
\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

with known, fixed values for $t_{0} \in \mathbb{R}$ and $\mathbf{x}_{0} \in \mathbb{R}^{n}$.
Theorem
When $A(t)$ and $\mathbf{b}(t)$ are continuous on an interval I, the above initial value problem has a unique solution on I.

Turning higher order linear systems into first order

Aren't we a little limited if all we can solve are first order differential equations? Not always.

Example

Consider the linear second order system

$$
\begin{aligned}
x^{\prime \prime}(t)-4 y(t) & =e^{t} \\
y^{\prime \prime}(t)+x^{\prime}(t) & =\sin t .
\end{aligned}
$$

Introduce new variables

$$
x_{1}(t)=x(t), \quad x_{2}(t)=x^{\prime}(t), \quad x_{3}(t)=y(t), \quad x_{4}(t)=y^{\prime}(t)
$$

Then the above equations can be replaced with

$$
\begin{aligned}
x_{2}^{\prime}(t)-4 x_{3}(t) & =e^{t} \\
x_{4}^{\prime}(t)+x_{2}(t) & =\sin t,
\end{aligned}
$$

and we must supplement them with the equations

$$
x_{1}^{\prime}(t)=x_{2}(t), \quad x_{3}^{\prime}(t)=x_{4}(t)
$$

