Math 240

First order linear system

Solutions Beyond first order systems

Linear Systems of Differential Equations

Math 240 — Calculus III

Summer 2015, Session II

Tuesday, July 21, 2015

Math 240

First order linear system

Solutions Beyond first order systems

1. First order linear systems Solutions to vector differential equations Beyond first order systems

Math 240

First order linear systems

Solutions Beyond first order systems

First order linear systems

Definition

A first order system of differential equations is of the form

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t),$$

where A(t) is an $n \times n$ matrix function and $\mathbf{x}(t)$ and $\mathbf{b}(t)$ are *n*-vector functions. Also called a **vector differential** equation.

Example

The linear system

$$\begin{aligned} x_1'(t) &= \cos(t)x_1(t) - \sin(t)x_2(t) + e^{-t} \\ x_2'(t) &= \sin(t)x_1(t) + \cos(t)x_2(t) - e^{-t} \end{aligned}$$

can also be written as the vector differential equation

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t)$$

where

$$A(t) = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \text{ and } \mathbf{b}(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$$

Math 240

First order linear system

Solutions Beyond first order systems

The vector space $V_n(I)$

A solution to a vector differential equation will be an element of the vector space $V_n(I)$ consisting of column *n*-vector functions defined on the interval I.

Definition

Suppose $\mathbf{x}_1(t), \mathbf{x}_2(t), \dots, \mathbf{x}_n(t) \in V_n(I)$. The **Wronskian** of these vectors is

$$W[\mathbf{x}_1,\ldots,\mathbf{x}_n](t) = \begin{vmatrix} | & | & | \\ \mathbf{x}_1(t) & \mathbf{x}_2(t) & \cdots & \mathbf{x}_n(t) \\ | & | & | \end{vmatrix}.$$

Theorem

If $W[\mathbf{x}_1, \ldots, \mathbf{x}_n](t)$ is nonzero for at least one $t \in I$, then $\{\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)\}$ is a linearly independent subset of $V_n(I)$.

Math 240

First order linear system

Solutions Beyond first order systems

As with linear systems, a homogeneous linear system of differential equations is one in which $\mathbf{b}(t) = 0$.

Theorem

If A(t) is an $n \times n$ matrix function that is continuous on the interval I, then the set of all solutions to $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ is a subspace of $V_n(I)$ of dimension n.

Proof.

Up to you. Proof of dim = n later, if there's time. Q.E.D.

Math 240

First order linear systems

Solutions Beyond first order systems

The general solution: homogeneous case

If the solution set is a vector space of dimension n, it has a basis.

Definition

Any set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ of n solutions to $\mathbf{x}' = A\mathbf{x}$ that is linearly independent on I is called a **fundamental set of solutions** on I. Any solution may be written in the form

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t),$$

which is called the general solution.

Theorem

If A(t) is an $n \times n$ matrix function that is continuous on an interval I, and $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is a linearly independent set of solutions to $\mathbf{x}' = A\mathbf{x}$ on I, then

$$W[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n](t)\neq 0$$

for every $t \in I$.

Math 240

First order linear system

Solutions Beyond first order systems

The general solution: nonhomogeneous case

The case of nonhomogeneous systems is also familiar.

Theorem

Suppose A(t) is an $n \times n$ matrix function continuous on an interval I and $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is a fundamental set of solutions to the equation $\mathbf{x}' = A\mathbf{x}$. If $\mathbf{x} = \mathbf{x}_p(t)$ is any particular solution to the nonhomogeneous vector differential equation

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t)$$

on I, then every solution to this equation on I is in the form of the general solution

$$\mathbf{x}'(t) = \underbrace{c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t)}_{\mathbf{x}_c(t)} + \mathbf{x}_p(t),$$

where $\mathbf{x}_p(t)$ is any particular solution.

The two pieces of the general solution are the **particular** solution, $\mathbf{x}_p(t)$, and the complementary solution, $\mathbf{x}_c(t)$.

Math 240

First order linear system

Solutions Beyond first

Initial value problems

Sometimes, we are interested in one particular solution to a vector differential equation.

Definition

An **initial value problem** consists of a vector differential equation

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t)$$

and an initial condition

 $\mathbf{x}(t_0) = \mathbf{x}_0$

with known, fixed values for $t_0 \in \mathbb{R}$ and $\mathbf{x}_0 \in \mathbb{R}^n$.

Theorem

When A(t) and $\mathbf{b}(t)$ are continuous on an interval I, the above initial value problem has a unique solution on I.

Math 240

First order linear system

Beyond first order systems

Turning higher order linear systems into first order

Aren't we a little limited if all we can solve are first order differential equations? Not always.

Example

Consider the linear second order system

$$x''(t) - 4y(t) = e^t,$$

 $y''(t) + x'(t) = \sin t.$

Introduce new variables

 $x_1(t) = x(t), \quad x_2(t) = x'(t), \quad x_3(t) = y(t), \quad x_4(t) = y'(t).$

Then the above equations can be replaced with

$$\begin{aligned} x_2'(t) &- 4x_3(t) = e^t, \\ x_4'(t) &+ x_2(t) = \sin t, \end{aligned}$$

and we must supplement them with the equations

$$x'_1(t) = x_2(t), \quad x'_3(t) = x_4(t).$$

