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Introduction

Next week, we will apply linear algebra to solving differential
equations. One that is particularly easy to solve is

y′ = ay.

It has the solution y = ceat, where c is any real (or complex)
number. Viewed in terms of linear transformations, y = ceat is
the solution to the vector equation

T (y) = ay, (1)

where T : Ck(I)→ Ck−1(I) is T (y) = y′. We are going to
study equation (1) in a more general context.
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Definition

Definition
Let A be an n× n matrix. Any value of λ for which

Av = λv

has nontrivial solutions v are called eigenvalues of A. The
corresponding nonzero vectors v are called eigenvectors of A.
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Figure : A geometrical description of eigenvectors in R2.
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Example

Example

If A is the matrix

A =

[
1 1
−3 5

]
,

then the vector v = (1, 3) is an eigenvector for A because

Av =

[
1 1
−3 5

] [
1
3

]
=

[
4
12

]
= 4v.

The corresponding eigenvalue is λ = 4.

Remark
Note that if Av = λv and c is any scalar, then

A(cv) = cAv = c(λv) = λ(cv).

Consequently, if v is an eigenvector of A, then so is cv for any
nonzero scalar c.
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Finding eigenvalues

The eigenvector/eigenvalue equation can be rewritten as

(A− λI)v = 0.

The eigenvalues of A are the values of λ for which the above
equation has nontrivial solutions. There are nontrivial
solutions if and only if

det (A− λI) = 0.

Definition
For a given n× n matrix A, the polynomial

p(λ) = det(A− λI)
is called the characteristic polynomial of A, and the equation

p(λ) = 0

is called the characteristic equation of A.

The eigenvalues of A are the roots of its characteristic
polynomial.
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Finding eigenvectors

If λ is a root of the characteristic polynomial, then the nonzero
elements of

nullspace (A− λI)

will be eigenvectors for A.

Since nonzero linear combinations of eigenvectors for a single
eigenvalue are still eigenvectors, we’ll find a set of linearly
independent eigenvectors for each eigenvalue.
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Example

Find all of the eigenvalues and eigenvectors of

A =

[
5 −4
8 −7

]
.

Compute the characteristic polynomial

det(A− λI) =
∣∣∣∣5− λ −4

8 −7− λ

∣∣∣∣ = λ2 + 2λ− 3.

Its roots are λ = −3 and λ = 1. These are the eigenvalues.
If λ = −3, we have the eigenvector (1, 2).
If λ = 1, then

A− I =

[
4 −4
8 −8

]
,

which gives us the eigenvector (1, 1).
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Repeated eigenvalues

Find all of the eigenvalues and eigenvectors of

A =

 5 12 −6
−3 −10 6
−3 −12 8

 .
Compute the characteristic polynomial −(λ− 2)2(λ+ 1).

Definition
If A is a matrix with characteristic polynomial p(λ), the
multiplicity of a root λ of p is called the algebraic multiplicity
of the eigenvalue λ.

Example

In the example above, the eigenvalue λ = 2 has algebraic
multiplicity 2, while λ = −1 has algebraic multiplicity 1.
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Repeated eigenvalues

The eigenvalue λ = 2 gives us two linearly independent
eigenvectors (−4, 1, 0) and (2, 0, 1).
When λ = −1, we obtain the single eigenvector (−1, 1, 1).

Definition
The number of linearly independent eigenvectors corresponding
to a single eigenvalue is its geometric multiplicity.

Example

Above, the eigenvalue λ = 2 has geometric multiplicity 2, while
λ = −1 has geometric multiplicity 1.

Theorem
The geometric multiplicity of an eigenvalue is less than or equal
to its algebraic multiplicity.

Definition
A matrix that has an eigenvalue whose geometric multiplicity is
less than its algebraic multiplicity is called defective.
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A defective matrix

Find all of the eigenvalues and eigenvectors of

A =

[
1 1
0 1

]
.

The characteristic polynomial is (λ− 1)2, so we have a single
eigenvalue λ = 1 with algebraic multiplicity 2.
The matrix

A− I =

[
0 1
0 0

]
has a one-dimensional null space spanned by the vector (1, 0).
Thus, the geometric multiplicity of this eigenvalue is 1.
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Complex eigenvalues

Find all of the eigenvalues and eigenvectors of

A =

[
−2 −6
3 4

]
.

The characteristic polynomial is λ2 − 2λ+ 10. Its roots are

λ1 = 1 + 3i and λ2 = λ1 = 1− 3i.

The eigenvector corresponding to λ1 is (−1 + i, 1).

Theorem
Let A be a square matrix with real elements. If λ is a complex
eigenvalue of A with eigenvector v, then λ is an eigenvalue of
A with eigenvector v.

Example

The eigenvector corresponding to λ2 = λ1 is (−1− i, 1).
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Segue

If an n× n matrix A is nondefective, then a set of linearly
independent eigenvectors for A will form a basis for Rn. If we
express the linear transformation T (x) = Ax as a matrix
transformation relative to this basis, it will look like

λ1 0
λ2

. . .

0 λn

 .
The following example will demonstrate the utility of such a
representation.
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Differential equation example

Determine all solutions to the linear system of differential
equations

x′ =

[
x′1
x′2

]
=

[
5x1 − 4x2
8x1 − 7x2

]
=

[
5 −4
8 −7

] [
x1
x2

]
= Ax.

We know that the coefficient matrix has eigenvalues λ1 = 1
and λ2 = −3 with corresponding eigenvectors v1 = (1, 1) and
v2 = (1, 2), respectively. Using the basis {v1,v2}, we write the
linear transformation T (x) = Ax in the matrix representation[

1 0
0 −3

]
.
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Differential equation example

Now consider the new linear system

y′ =

[
y′1
y′2

]
=

[
1 0
0 −3

] [
y1
y2

]
= By.

It has the obvious solution

y1 = c1e
t and y2 = c2e

−3t,

for any scalars c1 and c2. How is this relevant to x′ = Ax?

A
[
v1 v2

]
=
[
Av1 Av2

]
=
[
v1 −3v2

]
=
[
v1 v2

]
B.

Let S =
[
v1 v2

]
. Since y′ = By and AS = SB, we have

(Sy)′ = Sy′ = SBy = ASy = A (Sy) .

Thus, a solution to x′ = Ax is given by

x = Sy =

[
1 1
1 2

] [
c1e

t

c2e
−3t

]
=

[
c1e

t + c2e
−3t

c1e
t + 2c2e

−3t

]
.
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