

Eigenvalues, Eigenvectors, and Diagonalization

Math 240 - Calculus III

Summer 2015, Session II

Thursday, July 16, 2015

Eigenvalues, Eigenvectors, and Diagonalization

Math 240
Eigenvalues and
Eigenvectors
Diagonalization

1. Eigenvalues and Eigenvectors
2. Diagonalization

45um

票

Next week, we will apply linear algebra to solving differential equations. One that is particularly easy to solve is

$$
y^{\prime}=a y .
$$

It has the solution $y=c e^{a t}$, where c is any real (or complex) number. Viewed in terms of linear transformations, $y=c e^{a t}$ is the solution to the vector equation

$$
\begin{equation*}
T(y)=a y \tag{1}
\end{equation*}
$$

where $T: C^{k}(I) \rightarrow C^{k-1}(I)$ is $T(y)=y^{\prime}$. We are going to study equation (1) in a more general context.

Definition

Let A be an $n \times n$ matrix. Any value of λ for which

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

has nontrivial solutions \mathbf{v} are called eigenvalues of A. The corresponding nonzero vectors \mathbf{v} are called eigenvectors of A.

Figure: A geometrical description of eigenvectors in \mathbb{R}^{2}.

Example

If A is the matrix

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-3 & 5
\end{array}\right]
$$

then the vector $\mathbf{v}=(1,3)$ is an eigenvector for A because

$$
A \mathbf{v}=\left[\begin{array}{rr}
1 & 1 \\
-3 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
4 \\
12
\end{array}\right]=4 \mathbf{v}
$$

The corresponding eigenvalue is $\lambda=4$.
Remark
Note that if $A \mathbf{v}=\lambda \mathbf{v}$ and c is any scalar, then

$$
A(c \mathbf{v})=c A \mathbf{v}=c(\lambda \mathbf{v})=\lambda(c \mathbf{v})
$$

Consequently, if \mathbf{v} is an eigenvector of A, then so is $c \mathbf{v}$ for any nonzero scalar c.

The eigenvector/eigenvalue equation can be rewritten as

$$
(A-\lambda I) \mathbf{v}=\mathbf{0}
$$

The eigenvalues of A are the values of λ for which the above equation has nontrivial solutions. There are nontrivial solutions if and only if

$$
\operatorname{det}(A-\lambda I)=0
$$

Definition

For a given $n \times n$ matrix A, the polynomial

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

is called the characteristic polynomial of A, and the equation

$$
p(\lambda)=0
$$

is called the characteristic equation of A.
The eigenvalues of A are the roots of its characteristic polynomial.

If λ is a root of the characteristic polynomial, then the nonzero elements of

$$
\text { nullspace }(A-\lambda I)
$$

will be eigenvectors for A.
Since nonzero linear combinations of eigenvectors for a single eigenvalue are still eigenvectors, we'll find a set of linearly independent eigenvectors for each eigenvalue.

Finding eigenvectors

(20

Find all of the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{ll}
5 & -4 \\
8 & -7
\end{array}\right]
$$

Compute the characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
5-\lambda & -4 \\
8 & -7-\lambda
\end{array}\right|=\lambda^{2}+2 \lambda-3
$$

Its roots are $\lambda=-3$ and $\lambda=1$. These are the eigenvalues. If $\lambda=-3$, we have the eigenvector $(1,2)$.
If $\lambda=1$, then

$$
A-I=\left[\begin{array}{ll}
4 & -4 \\
8 & -8
\end{array}\right]
$$

which gives us the eigenvector $(1,1)$.

Find all of the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{rrr}
5 & 12 & -6 \\
-3 & -10 & 6 \\
-3 & -12 & 8
\end{array}\right]
$$

Compute the characteristic polynomial $-(\lambda-2)^{2}(\lambda+1)$.

Definition

If A is a matrix with characteristic polynomial $p(\lambda)$, the multiplicity of a root λ of p is called the algebraic multiplicity of the eigenvalue λ.

Example

In the example above, the eigenvalue $\lambda=2$ has algebraic multiplicity 2 , while $\lambda=-1$ has algebraic multiplicity 1 .

Definition

The number of linearly independent eigenvectors corresponding to a single eigenvalue is its geometric multiplicity.

Example

Above, the eigenvalue $\lambda=2$ has geometric multiplicity 2 , while $\lambda=-1$ has geometric multiplicity 1 .

Theorem

The geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity.

Definition

A matrix that has an eigenvalue whose geometric multiplicity is less than its algebraic multiplicity is called defective.

Find all of the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

The characteristic polynomial is $(\lambda-1)^{2}$, so we have a single eigenvalue $\lambda=1$ with algebraic multiplicity 2 .
The matrix

$$
A-I=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

has a one-dimensional null space spanned by the vector $(1,0)$. Thus, the geometric multiplicity of this eigenvalue is 1 .

A defective matrix

Find all of the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{rr}
-2 & -6 \\
3 & 4
\end{array}\right]
$$

The characteristic polynomial is $\lambda^{2}-2 \lambda+10$. Its roots are

$$
\lambda_{1}=1+3 i \quad \text { and } \quad \lambda_{2}=\overline{\lambda_{1}}=1-3 i .
$$

The eigenvector corresponding to λ_{1} is $(-1+i, 1)$.
Theorem
Let A be a square matrix with real elements. If λ is a complex eigenvalue of A with eigenvector \mathbf{v}, then $\bar{\lambda}$ is an eigenvalue of A with eigenvector $\overline{\mathbf{v}}$.

Example

The eigenvector corresponding to $\lambda_{2}=\overline{\lambda_{1}}$ is $(-1-i, 1)$.

Segue

If an $n \times n$ matrix A is nondefective, then a set of linearly independent eigenvectors for A will form a basis for \mathbb{R}^{n}. If we express the linear transformation $T(\mathbf{x})=A \mathbf{x}$ as a matrix transformation relative to this basis, it will look like

$$
\left[\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right]
$$

The following example will demonstrate the utility of such a representation.

Determine all solutions to the linear system of differential equations

$$
\mathbf{x}^{\prime}=\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
5 x_{1}-4 x_{2} \\
8 x_{1}-7 x_{2}
\end{array}\right]=\left[\begin{array}{ll}
5 & -4 \\
8 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A \mathbf{x}
$$

We know that the coefficient matrix has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-3$ with corresponding eigenvectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,2)$, respectively. Using the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, we write the linear transformation $T(\mathbf{x})=A \mathbf{x}$ in the matrix representation

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -3
\end{array}\right]
$$

Differential equation example

It has the obvious solution

$$
y_{1}=c_{1} e^{t} \quad \text { and } \quad y_{2}=c_{2} e^{-3 t}
$$

for any scalars c_{1} and c_{2}. How is this relevant to $\mathrm{x}^{\prime}=A \mathbf{x}$?

$$
A\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A \mathbf{v}_{1} & A \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{v}_{1} & -3 \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right] B .
$$

Let $S=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$. Since $\mathbf{y}^{\prime}=B \mathbf{y}$ and $A S=S B$, we have

$$
(S \mathbf{y})^{\prime}=S \mathbf{y}^{\prime}=S B \mathbf{y}=A S \mathbf{y}=A(S \mathbf{y})
$$

Thus, a solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ is given by

$$
\mathbf{x}=S \mathbf{y}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
c_{1} e^{t} \\
c_{2} e^{-3 t}
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{t}+c_{2} e^{-3 t} \\
c_{1} e^{t}+2 c_{2} e^{-3 t}
\end{array}\right]
$$

