On Bases and the Rank-Nullity Theorem

Math 240 - Calculus III

Summer 2015, Session II
Tuesday, July 14, 2015

1. The Utility of Bases
2. The Rank-Nullity Theorem Homogeneous linear systems Nonhomogeneous linear systems

What are bases good for?

Let V be a vector space with basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.

- Since the basis is a spanning set, every $\mathbf{v} \in V$ can be written as

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}
$$

- Since the basis is independent, if

$$
\mathbf{v}=d_{1} \mathbf{v}_{1}+\cdots+d_{n} \mathbf{v}_{n}
$$

is another way of writing \mathbf{v}, then $c_{i}=d_{i}$ for each i.

Theorem

Every vector $\mathbf{v} \in V$ can be written in a unique way as a linear combination of basis elements.

The theorem allows us to identify \mathbf{v} with the vector

Examples

Examples

1. What is a basis for the vector space whose vectors are complex numbers and whose scalars are real numbers? Is there more than one "natural" one?
2. In the subspace of $C^{0}(\mathbb{R})$ spanned by $f_{1}(x)=2 \sin ^{2} x$ and $f_{2}(x)=-5 \cos ^{2} x$, give coordinates for the vector $f(x)=1$.
3. In the vector space P_{2}, show that
$p_{1}(x)=1-x, \quad p_{2}(x)=5+3 x-2 x^{2}, \quad p_{3}(x)=1+2 x-x^{2}$
is a basis. Then write the standard basis vectors $e_{1}(x)=1, e_{2}(x)=x, e_{3}(x)=x^{2}$ in terms of $p_{1}(x)$, $p_{2}(x)$, and $p_{3}(x)$.
4. Use a basis to identify the span of $\mathbf{v}_{1}=(1,-1,4)$, $\mathbf{v}_{2}=(5,3,-2), \mathbf{v}_{3}=(1,2,-1)$ with \mathbb{R}^{2}.

Reinterpreting rank

Specifically, we get a linear dependency for each independent vector in nullspace (A). The remaining vectors will be a basis for their span.

Proposition

The rank of a matrix is equal to the dimension of the span of its columns.

Definition

The span of the columns of a matrix A is called its column space. It is denoted by colspace (A).

The Rank-Nullity Theorem

The

Rank-Nullity
Theorem

Definition
When A is an $m \times n$ matrix, recall that the null space of A is

$$
\operatorname{nullspace}(A)=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

Its dimension is referred to as the nullity of A.
Theorem (Rank-Nullity Theorem)
For any $m \times n$ matrix A,

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

Homogeneous linear systems

We're now going to examine the geometry of the solution set of a linear system. Consider the linear system

$$
A \mathbf{x}=\mathbf{b}
$$

where A is $m \times n$.
If $\mathbf{b}=\mathbf{0}$, the system is called homogeneous. In this case, the solution set is simply the null space of A.

Any homogeneous system has the solution $\mathbf{x}=\mathbf{0}$, which is called the trivial solution. Geometrically, this means that the solution set passes through the origin. Furthermore, we have shown that the solution set of a homogeneous system is in fact a subspace of \mathbb{R}^{n}.

Structure of a homogeneous solution set

Theorem

- If $\operatorname{rank}(A)=n$, then $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$, so nullspace $(A)=\{\mathbf{0}\}$.
- If $\operatorname{rank}(A)=r<n$, then $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions, all of which are of the form

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n-r} \mathbf{x}_{n-r}
$$

where $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n-r}\right\}$ is a basis for nullspace (A).

Remark

Such an expression is called the general solution to the homogeneous linear system.

Nonhomogeneous linear systems

Now consider a nonhomogeneous linear system

$$
A \mathbf{x}=\mathbf{b}
$$

where A be an $m \times n$ matrix and \mathbf{b} is not necessarily $\mathbf{0}$.

Theorem

- If \mathbf{b} is not in colspace (A), then the system is inconsistent.
- If $\mathbf{b} \in \operatorname{colspace}(A)$, then the system is consistent and has
- a unique solution if and only if $\operatorname{rank}(A)=n$.
- an infinite number of solutions if and only if $\operatorname{rank}(A)<n$.

Geometrically, a nonhomogeneous solution set is just the corresponding homogeneous solution set that has been shifted away from the origin.

Theorem

In the case where $\operatorname{rank}(A)=r<n$ and $\mathbf{b} \in \operatorname{colspace}(A)$, then all solutions are of the form

$$
\begin{aligned}
\mathbf{x} & =\underbrace{c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n-r} \mathbf{x}_{n-r}}_{\mathbf{x}_{c}}+\mathbf{x}_{p} \\
& =\mathbf{x}_{p}
\end{aligned}
$$

where \mathbf{x}_{p} is any particular solution to $A \mathbf{x}=\mathbf{b}$ and $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n-r}\right\}$ is a basis for nullspace (A).

Remark

The above expression is the general solution to a nonhomogeneous linear system. It has two components:

- the complementary solution, \mathbf{x}_{c}, and
- the particular solution, \mathbf{x}_{p}.

