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Motivation

We know a lot about Euclidean space. By thinking of other
kinds of objects as vectors, we can apply our matrix techniques
to a wider class of problems. What are the salient
characteristics of vectors?

Vector addition a way of combining two vectors, u and v, into
the single vector u+ v

Scalar multiplication a way of combining a scalar, k, with a
vector, v, to end up with the vector kv

A vector space is a set of objects with a notion of addition
and scalar multiplication that behave like vectors in Rn.
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Examples of vector spaces

Real vector spaces

I Rn (the archetype of a vector space)

I R — the set of real numbers

I Mm×n(R) — the set of all m× n matrices with real
entries for fixed m and n. If m = n, just write Mn(R).

I Pn — the set of polynomials with real coefficients of
degree at most n

I P — the set of all polynomials with real coefficients

I Ck(I) — the set of all real-valued functions on the
interval I having k continuous derivatives

Complex vector spaces

I C, Cn

I Mm×n(C)
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Definition
A vector space consists of a set of scalars, a nonempty set, V ,
whose elements are called vectors, and the operations of
vector addition and scalar multiplication satisfying

1. Closure under addition: For each pair of vectors u and v,
the sum u+ v is an element of V .

2. Closure under scalar multiplication: For each vector v and
scalar k, the scalar multiple kv is an element of V .

3. Commutativity of addition: For all u,v ∈ V , we have
u+ v = v + u.

4. Associativity of addition: For all u,v,w ∈ V , we have
(u+ v) +w = u+ (v +w).

5. Existence of a zero vector: There is a vector 0 ∈ V
satisfying v + 0 = v for all v ∈ V .
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Definition
A vector space consists of a set of scalars, a nonempty set, V ,
whose elements are called vectors, and the operations of
vector addition and scalar multiplication satisfying

6. Existence of additive inverses: For each v ∈ V , there is a
vector −v ∈ V such that v + (−v) = 0.

7. Unit property: For all vectors v, we have 1v = v.

8. Associativity of scalar multiplication: For all vectors v and
scalars r, s, we have (rs)v = r(sv).

9. Distributive property of scalar multiplication over vector
addition: For all vectors u and v and scalars r, we have
r(u+ v) = ru+ rv.

10. Disributive property of scalar multiplication over scalar
addition: For all vectors v and scalars r and s, we have
(r + s)v = rv + sv.
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Example

Let’s verify that M2(R) is a vector space.

1. From the definition of matrix addition, we know that the
sum of two 2× 2 matrices is also a 2× 2 matrix.

2. From the definition of scalar-matrix multiplication, we
know that multiplying a 2× 2 matrix by a scalar results in
a 2× 2 matrix.

3. Given two 2× 2 matrices

A =

[
a1 a2
a3 a4

]
and B =

[
b1 b2
b3 b4

]
,

their sum is

A+B =

[
a1 + b1 a2 + b2
a3 + b3 a4 + b4

]
=

[
b1 + a1 b2 + a2
b3 + a3 b4 + a4

]
= B +A.
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Example

Let’s verify that M2(R) is a vector space.

4. Given three 2× 2 matrices

A =

[
a1 a2
a3 a4

]
, B =

[
b1 b2
b3 b4

]
, C =

[
c1 c2
c3 c4

]
,

we have

(A+B) + C =

[
(a1 + b1) + c1 (a2 + b2) + c2
(a3 + b3) + c3 (a4 + b4) + c4

]
=

[
a1 + (b1 + c1) a2 + (b2 + c2)
a3 + (b3 + c3) a4 + (b4 + c4)

]
= A+ (B + C).

5. If A ∈M2(R) then A+

[
0 0
0 0

]
= A, so the zero vector in

M2(R) is 0 =

[
0 0
0 0

]
.
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Example

Let’s verify that M2(R) is a vector space.

6. The additive inverse of A =

[
a b
c d

]
is −A =

[
−a −b
−c −d

]
because

A+ (−A) =

[
a+ (−a) b+ (−b)
c+ (−c) d+ (−d)

]
=

[
0 0
0 0

]
= 0.

7. If A is any matrix, then obviously 1A = A.

8. Given a matrix A =

[
a b
c d

]
and scalars r and s, we have

(rs)A =

[
(rs)a (rs)b
(rs)c (rs)d

]
=

[
r(sa) r(sb)
r(sc) r(sd)

]
= r

[
sa sb
sc sd

]
= r(sA).
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Example

Let’s verify that M2(R) is a vector space.

9. Given matrices A =

[
a1 a2
a3 a4

]
and B =

[
b1 b2
b3 b4

]
and a

scalar r, we have

r(A+B) =

[
r(a1 + b1) r(a2 + b2)
r(a3 + b3) r(a4 + b4)

]
=

[
ra1 + rb1 ra2 + rb2
ra3 + rb3 ra4 + rb4

]
= rA+ rB.

10. Given a matrix A =

[
a b
c d

]
and scalars r and s, we have

(r + s)A =

[
(r + s)a (r + s)b
(r + s)c (r + s)d

]
=

[
ra+ sa rb+ sb
rc+ sc rd+ sd

]
= rA+ sA.
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Additional properties of vector spaces

The following properties are consequences of the vector space
axioms.

I The zero vector is unique.

I 0u = 0 for all u ∈ V .

I k0 = 0 for all scalar k.

I The additive inverse of a vector is unique.

I For all u ∈ V , its additive inverse is given by −u = (−1)u.

I If k is a scalar and u ∈ V such that ku = 0 then either
k = 0 or u = 0.



Vector Spaces

Math 240

Definition

Properties

Set notation

Subspaces

Aside: set notation

Definition
Let V be a set. We write the subset of V satisfying some
conditions as

S = {v ∈ V : conditions on v} .

Examples

1. The plane −3x+ 2y + z = 4 can be written{
(x, y, z) ∈ R3 : −3x+ 2y + z = 4

}
.

2. The line perpendicular to this plane passing through the
point (1, 0, 0) can be written{

x ∈ R3 : x = (1− 3r, 2r, r), r ∈ R
}

or {
(1− 3r, 2r, r) ∈ R3 : r ∈ R

}
.
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Practice problem

If A is an m× n matrix, verify that

V = {x ∈ Rn : Ax = 0}

is a vector space.

Rn is a vector space. V is a subset of Rn and also a vector
space. One vector space inside another?!?

What about
W = {x ∈ Rn : Ax = b}

where b 6= 0?
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Definition
Suppose V is a vector space and S is a nonempty subset of V .
We say that S is a subspace of V if S is a vector space under
the same addition and scalar multiplication as V .

Examples

1. Any vector space has two improper subspaces: {0} and
the vector space itself. Other subspaces are called proper.

2. The solution set of a homogeneous linear system is a
subspace of Rn. This includes all lines, planes, and
hyperplanes through the origin.

3. The set of polynomials in P2 with no linear term forms a
subspace of P2. In turn, P2 is a subspace of P .

4. Ck(I) is a subspace of C`(I) for all intervals I and all
k ≥ `.
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Criteria for subspaces

Checking all 10 axioms for a subspace is a lot of work.
Fortunately, it’s not necessary.

Theorem
If V is a vector space and S is a nonempty subset of V then S
is a subspace of V if and only if S is closed under the addition
and scalar multiplication in V .

Remark
Don’t forget the “nonempty.” It’s often quicker and easier to
just check that 0 ∈ S.
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Example

Let S denote the set of real symmetric n× n matrices. Let’s
check that S is a subspace of Mn(R).

First, write S as

S =
{
A ∈Mn(R) : AT = A

}
.

Now, check three things:

1. 0 ∈ S: Obvious.

2. If A,B ∈ S then A+B ∈ S:

(A+B)T = AT +BT = A+B

3. If A ∈ S and k is a scalar then kA ∈ S:

(kA)T = kAT = kA

It’s a subspace!
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The null space of a matrix

Definition
If A is an m×n matrix, the solution space of the homogeneous
linear system Ax = 0 is called the null space of A.

nullspace(A) = {x ∈ Rn : Ax = 0}

Remarks

I The null space of an m× n matrix is a subspace of Rn.

I The null space of a matrix with complex entries is defined
analogously, replacing R with C.

I As noted before, the solution set of a nonhomogeneous
equation (Ax = b with b 6= 0) is not a subspace since it
does not contain 0.
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Differential equation example

Show that the set of all solutions to the differential equation

y′′ + a1(x)y
′ + a2(x)y = 0

on an interval I is a subspace of C2(I).

The set of solutions to a homogeneous linear differential
equation is called the solution space.
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Span

Here’s another way to construct subspaces:

Definition
Let v1, . . . ,vn a set of vectors in a vector space V . A linear
combination of v1, . . . ,vn is an expression of the form

c1v1 + c2v2 + · · ·+ cnvn,

where c1, . . . , cn are scalars. The span of v1, . . . ,vn is the set
of all linear combinations of them.

span{v1, . . . ,vn} = {c1v1 + · · ·+ cnvn ∈ V : c1, . . . , cn ∈ R}

Example

The span of a single, nonzero vector is a line through the origin.

span{v} = {tv ∈ V : t ∈ R}
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Span

Theorem
Let v1, . . . ,vn be vectors in a vector space V . The span of
v1, . . . ,vn is a subspace of V .

Question
What’s the span of v1 = (1, 1) and v2 = (2,−1) in R2?
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