The Determinant

Math 240 - Calculus III

Summer 2015, Session II

Wednesday, July 8, 2015

1. Definition of the determinant
2. Computing determinants
3. Properties of determinants

What is the determinant?

Definition

Yesterday: $A \mathbf{x}=\mathbf{b}$ has a unique solution when A is square and nonsingular.
Today: how to determine whether A is invertible.

Example
Recall that a 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible as long as $a d-b c \neq 0$. The quantity $a d-b c$ is the determinant of this matrix and the matrix is invertible exactly when its determinant is nonzero.

What should the determinant be?

Definition

Definition

The determinant of an upper triangular matrix, $A=\left[a_{i j}\right]$, is the product of the elements $a_{i i}$ along its main diagonal. We write

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
& \ddots & \vdots \\
0 & & a_{n n}
\end{array}\right|=a_{11} a_{22} \cdots a_{n n}
$$

What about matrices that are not upper triangular? We can make any matrix upper triangular via row reduction. So how do elementary row operations affect the determinant?

- $M_{i}(k)$ multiplies the determinant by k. (Remember that k cannot be zero.)
- $A_{i j}(k)$ does not change the determinant.
- $P_{i j}$ multiplies the determinant by -1 .

Let's extend these properties to all matrices.

Definition

The determinant of a square matrix, A, is the determinant of any upper triangular matrix obtained from A by row reduction times $\frac{1}{k}$ for every $M_{i}(k)$ operation used while reducing as well as -1 for each $P_{i j}$ operation used.

Computing determinants

Definition

Computing

So the determinant is

$$
\left|\begin{array}{rrr}
0 & 2 & 1 \\
2 & 3 & 10 \\
1 & -1 & 0
\end{array}\right|=(-1)(5)\left|\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 2 \\
0 & 0 & -3
\end{array}\right|=15 .
$$

Computing determinants

Definition

Computing
Properties

Important Example
Given a general 2×2 matrix, $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, compute $\operatorname{det}(A)$.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \xrightarrow{A_{12}\left(-\frac{c}{a}\right)}\left[\begin{array}{cc}
a & b \\
0 & d-\frac{b c}{a}
\end{array}\right]
$$

so

$$
\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|=\left|\begin{array}{cc}
a & b \\
0 & d-\frac{b c}{a}
\end{array}\right|=a d-b c .
$$

This explains

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \text { when } a d-b c \neq 0
$$

Other methods of computing determinants

Definition

Computing

Example

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a & b & c \\
d & e & f
\end{array}\right|=\left|\begin{array}{cc}
b & c \\
e & f
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
a & c \\
d & f
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
a & b \\
d & e
\end{array}\right| \mathbf{k} .
$$

where $A_{i j}$ is the $(n-1) \times(n-1)$ submatrix obtained by removing the $i^{\text {th }}$ row and $j^{\text {th }}$ column from A.

Other methods of computing determinants

Definition

Computing

Corollary

If $A=\left[a_{i j}\right]$ is an $n \times n$ matrix and the element $a_{i j}$ is the only nonzero entry in its row or column then

$$
\operatorname{det}(A)=(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
$$

Example

$$
\left|\begin{array}{lll}
0 & 2 & 1 \\
3 & 0 & 0 \\
0 & 1 & 5
\end{array}\right|=-3\left|\begin{array}{ll}
2 & 1 \\
1 & 5
\end{array}\right|=-27
$$

Other methods of computing determinants

Definition

Computing

Some of you may have learned the method of computing a 3×3 determinant by multiplying diagonals.

Be aware that this method does not work for matrices larger than 3×3.

Properties of determinants

Theorem (Main theorem)

Suppose A is an $n \times n$ matrix. The following are equivalent:

- A is invertible,
- $\operatorname{det}(A) \neq 0$.

Further properties

- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
- The determinant of a lower triangular matrix is also the product of the elements on the main diagonal.
- If A has a row or column of zeros then $\operatorname{det}(A)=0$.
- If two rows or columns of A are the same then $\operatorname{det}(A)=0$.
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
- $\operatorname{det}(s A)=s^{n} \operatorname{det}(A)$.
- It is not true that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

Geometric interpretation

Definition
Computing Properties

Let A be an $n \times n$ matrix and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ be the rows or columns of A.

Theorem

The volume (or area, if $n=2$) of the paralellepiped determined by the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ is $|\operatorname{det}(A)|$.

Source: en.wikibooks.org/wiki/Linear_Algebra

Corollary

The vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ lie in the same hyperplane if and only if $\operatorname{det}(A)=0$.

