Linear Systems

Math 240 - Calculus III

Summer 2015, Session II

Monday, July 6, 2015

1. Linear systems

Solutions to linear systems
Differential linear systems
2. Solving linear systems

Definition

An $m \times n$ system of linear equations is a

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m},
\end{aligned}
$$

in unknowns x_{1}, \ldots, x_{n} with known values for the coefficients $a_{i j}$ and the constants b_{i}.
It can be written more concisely as the vector equation

$$
A \mathbf{x}=\mathbf{b}
$$

where $A=\left[a_{i j}\right]$ is the $m \times n$ coefficient matrix, and $\mathbf{b}=\left[b_{i}\right]$ and $\mathbf{x}=\left[x_{i}\right]$ are column vectors called the constant vector and the unknown vector, respectively.

Example

The following linear system

$$
\begin{array}{rr}
x_{1}+x_{2}-2 x_{3}= & 3 \\
3 x_{1}-2 x_{2}+9 x_{3} & =-1
\end{array}
$$

can also be written

$$
\left[\begin{array}{rrr}
1 & 1 & -2 \\
3 & -2 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1
\end{array}\right]
$$

or

$$
A \mathbf{x}=\mathbf{b}
$$

Solutions to linear systems

Definition

A solution to a linear system is a choice of scalar values for the unknowns that satisfies every equation. The collection of all solutions of a particular system is its solution set.

Example

The system

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3}= & 3 \\
3 x_{1}-2 x_{2}+9 x_{3} & =-1
\end{aligned}
$$

from the previous slide has the solution $x_{1}=1, x_{2}=2$, $x_{3}=0$. Its solution set is the line

$$
\mathbf{x}=(1-t, 2+3 t, t) \text { with } t \in \mathbb{R}
$$

Solutions to linear systems

Linear systems
Solutions
Differential linear systems
Solving linear systems

Planes intersect at a point: a unique solution

No common intersection: no solution
 infinite number of solutions

A system with no solutions is called inconsistent.

We say that a system with at least one solution is consistent.

Linear Systems

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=3 t x_{1}+9 x_{2}+6 e^{t} \\
& \frac{d x_{2}}{d t}=(2+t) x_{1}-7 e^{t^{2}} x_{2}+3 e^{t}
\end{aligned}
$$

can be written in the matrix form

$$
\frac{d \mathbf{x}}{d t}=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

where

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], A(t)=\left[\begin{array}{cc}
3 t & 9 \\
2+t & -7 e^{t^{2}}
\end{array}\right], \text { and } \mathbf{b}(t)=e^{t}\left[\begin{array}{l}
6 \\
3
\end{array}\right] .
$$

Operations on linear systems

Elementary row operations

Linear systems
Solutions
Differential linear systems
Solving linear systems

When we write a linear system in matrix form, $A \mathbf{x}=\mathbf{b}$, these actions correspond to operations on the rows of the matrix.

Definition

The augmented matrix associated to the linear system $A \mathbf{x}=\mathbf{b}$ is the matrix obtained by adding the column vector \mathbf{b} as a new last column of A. Explicitly, if we write A as a list of columns $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ then the augmented matrix is

$$
A^{\#}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] .
$$

Example

The augmented matrix associated to the linear system

$$
\begin{array}{r}
x_{1}+2 x_{2}+4 x_{3}=2 \\
2 x_{1}-5 x_{2}+3 x_{3}=6 \\
4 x_{1}+6 x_{2}-7 x_{3}=8
\end{array} \quad \text { is } \quad A^{\#}=\left[\begin{array}{rrrr}
1 & 2 & 4 & 2 \\
2 & -5 & 3 & 6 \\
4 & 6 & -7 & 8
\end{array}\right] .
$$

Elementary row operations

Linear systems
Solutions
Differential linear systems systems

When we write a linear system in matrix form, $A \mathbf{x}=\mathbf{b}$, these actions correspond to operations on the rows of the matrix.

- $P_{i j}$: Permute the i th and j th rows

$$
\left[\begin{array}{rrrr}
1 & 2 & 4 & 2 \\
2 & -5 & 3 & 6 \\
4 & 6 & -7 & 8
\end{array}\right] \xrightarrow{P_{12}}\left[\begin{array}{rrrr}
2 & -5 & 3 & 6 \\
1 & 2 & 4 & 2 \\
4 & 6 & -7 & 8
\end{array}\right]
$$

- $M_{i}(k)$: Multiply the i th row by the nonzero scalar k

$$
\left[\begin{array}{rrrr}
1 & 2 & 4 & 2 \\
2 & -5 & 3 & 6 \\
4 & 6 & -7 & 8
\end{array}\right] \xrightarrow{M_{2}(5)}\left[\begin{array}{rrrr}
1 & 2 & 4 & 2 \\
10 & -25 & 15 & 30 \\
4 & 6 & -7 & 8
\end{array}\right]
$$

- $A_{i j}(k)$: Add k times the i th row to the j th row

$$
\left[\begin{array}{rrrr}
1 & 2 & 4 & 2 \\
2 & -5 & 3 & 6 \\
4 & 6 & -7 & 8
\end{array}\right] \xrightarrow{A_{13}(2)}\left[\begin{array}{rrrr}
1 & 2 & 4 & 2 \\
2 & -5 & 3 & 6 \\
6 & 10 & 1 & 12
\end{array}\right]
$$

Back substitution

Example

Consider the following linear system.

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}=4 \\
x_{2}-3 x_{3}=5 \\
x_{3}=2 \tag{3}
\end{array}
$$

Equation 3 says that $x_{3}=2$. Plugging this into equation 2 yields $x_{2}=5+3 x_{3}=11$, and then use equation 1 to find $x_{1}=4-x_{2}+x_{3}=-5$. Thus, the solution to the linear system is $(-5,11,2)$.

This technique in which equations are solved from last to first by substituting in the values known so far is called back substitution.

Row-echelon form

What characteristics must the augmented matrix of a linear system have in order to do back substitution?

Definition
A matrix is in row-echelon form (REF) if

- any row consisting of all zeros is at the bottom,
- the leftmost non-zero entry in any row is 1 (called a leading 1),
- in two consecutive rows, the leading 1 in the lower row appears to the right of the leading 1 in the upper row.
It is in reduced row-echelon form (RREF) if in addition
- every leading 1 is the only non-zero entry in its column.

Row-echelon form

Math 240

Linear systems
Solutions
Differential linear systems
Solving linear systems

Examples

The following matrices are in row-echelon form:

$$
\left[\begin{array}{rrrr}
1 & -2 & 3 & 7 \\
0 & 1 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text {, and }\left[\begin{array}{rrrrr}
1 & -7 & 6 & 5 & 9 \\
0 & 0 & 1 & 2 & 5 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

whereas these are not:

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 1 & -1
\end{array}\right] \text { and }\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

These matrices are in reduced row-echelon form:

$$
\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{rrrr}
1 & -1 & 7 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 5 & 3 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text {, and } I_{n}
$$

Row-echelon form

Theorem

Any matrix can be reduced to row-echelon form using elementary row operations $\left(P_{i j}, M_{i}(k)\right.$, and $\left.A_{i j}(k)\right)$.

Example

Reduce the following matrix to row-echelon form.
$\left[\begin{array}{rrrr}2 & 1 & -1 & 3 \\ 1 & -1 & 2 & 1 \\ -4 & 6 & -7 & 1 \\ 2 & 0 & 1 & 3\end{array}\right] \xrightarrow[\substack{A_{13}(4) \\ A_{14}(-2)}]{\substack{P_{12} \\ A_{12}(-2)}}\left[\begin{array}{rrrr}1 & -1 & 2 & 1 \\ 0 & 3 & -5 & 1 \\ 0 & 2 & 1 & 5 \\ 0 & 2 & -3 & 1\end{array}\right]$
$\xrightarrow[\substack{A_{23}(-2) \\ A_{24}(-2)}]{A_{32}(-1)}\left[\begin{array}{rrrr}1 & -1 & 2 & 1 \\ 0 & 1 & -6 & -4 \\ 0 & 0 & 13 & 13 \\ 0 & 0 & 9 & 9\end{array}\right] \xrightarrow[A_{34}(-9)]{M_{3}\left(\frac{1}{13}\right)}\left[\begin{array}{rrrr}1 & -1 & 2 & 1 \\ 0 & 1 & -6 & -4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

Algorithm for reducing a matrix to REF

1. Start with an $m \times n$ matrix, A. If $A=0$, go to step 7 .
2. Determine the leftmost nonzero column (this is called a pivot column, and the topmost position in this column is called a pivot position, or simply a pivot).
3. Use elementary row ops to put a 1 in the pivot position.
4. Use elementary row ops to put 0 s below the pivot position.
5. If there are no more nonzero rows below the pivot position go to step 7, otherwise go to step 6.
6. Apply steps $2-5$ to the submatrix consisting of the rows that lie below the pivot position.
7. The matrix is in row-echelon form.

Gaussian elimination

The method of solving a linear system by reducing the augmented matrix to REF and then using back substitution is called Gaussian elimination.

