Final Exam Practice Problems

Math 240 - Calculus III
Summer 2015, Session II

Linear Algebra

1. Find the solution set of the given linear system.
(a) $\begin{aligned}-5 x_{1}-4 x_{2} & =0 \\ -8 x_{1}+x_{2} & =0\end{aligned}$
(b) $\begin{aligned}-x_{1}+6 x_{2}-25 x_{3} & =0 \\ 9 x_{1}+6 x_{2}-15 x_{3} & =0\end{aligned}$
$x_{1}-2 x_{2}+2 x_{3}=5$
(c) $x_{1}-x_{2}=-1$
$-x_{1}+x_{2}+x_{3}=5$
$x_{1}+x_{2}+3 x_{3}=3$
(d) $-x_{1}+x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+8 x_{3}=4$
$x_{1}+2 x_{2}-x_{3}+x_{4}=1$
(e) $-x_{1}-2 x_{2}+3 x_{3}+5 x_{4}=-5$ $-x_{1}-2 x_{2}-x_{3}-7 x_{4}=3$
2. Parameterize the line that is the intersection of the planes $x+y+3 z=4$ and $x+2 y+4 z=5$.
3. Calculate the determinant of the given matrix.
(a) $\left[\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{rrr}-1 & 2 & 0 \\ 2 & -2 & 5 \\ 4 & -1 & 3\end{array}\right]$
(c) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 5 & 8 \\ 1 & 1 & 2 & 3 \\ 1 & 3 & 5 & 8\end{array}\right]$
4. Determine whether the given matrix is invertible. Find its inverse if it has one.
(a) $\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 5 & 2 \\ 4 & 7 & 4\end{array}\right]$
(c) $\left[\begin{array}{rrr}1 & 0 & 4 \\ -1 & 1 & -1 \\ -1 & 0 & -3\end{array}\right]$
5. Find a basis for the subset of \mathbb{R}^{n} spanned by the given vectors.
(a) $\mathbf{v}_{1}=(1,2,1,3), \mathbf{v}_{2}=(3,6,3,9), \mathbf{v}_{3}=(1,3,5,4), \mathbf{v}_{4}=(2,3,-2,5)$
(b) $\mathbf{v}_{1}=(1,1,1,1,1), \mathbf{v}_{2}=(1,1,2,4,1), \mathbf{v}_{3}=(0,0,1,3,0), \mathbf{v}_{4}=(0,0,1,4,0)$
6. Let $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,2)$. Verify that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for \mathbb{R}^{2} and express $(2,-1)$ in this basis.
7. Determine a basis for the kernel and range of the linear transformation $T(\mathbf{v})=A \mathbf{v}$ where

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
-2 & 1 & -5 \\
3 & -2 & 8
\end{array}\right] .
$$

8. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(a, b)=(a-2 b, 3 a)$. Find the matrix representation of T relative to the given ordered basis.
(a) the standard basis $\{(1,0),(0,1)\}$
(b) $\{(1,2),(1,3)\}$
9. Let V be the subspace of $C^{\infty}(\mathbb{R})$ spanned by $y_{1}=e^{2 x} \cos x$ and $y_{2}=e^{2 x} \sin x$. Find the matrix representation of the linear transformation $T: V \rightarrow V$ given by $T(f)=f^{\prime}+3 f$ relative to the ordered basis $\left\{y_{1}, y_{2}\right\}$.
10. Determine whether the statement is true or false.
(a) The set of invertible $n \times n$ matrices is a subspace of $M_{n}(\mathbb{R})$.
(b) The set $\left\{(a, b, 0, a) \in \mathbb{R}^{4}: a, b \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{4}.
(c) The mapping $T: C^{2}(\mathbb{R}) \rightarrow C^{0}(\mathbb{R})$ defined by $T(f)=f^{\prime \prime}-3 f^{\prime}+5 f$ is a linear transformation.
(d) If the standard basis vectors $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ are eigenvectors of an $n \times n$ matrix, then the matrix is diagonal.
(e) If 1 is the only eigenvalue of an $n \times n$ matrix, then it must be the identity matrix.

More Linear Algebra

11. Let $V=\operatorname{span}\left\{e^{-3 x} \cos 2 x, e^{-3 x} \sin 2 x, x e^{-3 x} \cos 2 x, x e^{-3 x} \sin 2 x\right\}$, a subspace of $C^{3}(\mathbb{R})$. Let L be the differential operator $L=\left(D^{2}-2 D+3\right)(D+1)$. Write a matrix representation for the linear transformation $D: V \rightarrow V$ and use it to find a matrix for L.
12. Determine the equation for the plane in \mathbb{R}^{3} spanned by

$$
\{(1,2,3),(3,4,5),(4,5,6)\} .
$$

13. (a) Find a linear dependence relation among the vectors

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 2 & -1
\end{array}\right],\left[\begin{array}{ccc}
0 & 5 & -1 \\
2 & 2 & 0
\end{array}\right],\left[\begin{array}{ccc}
-2 & 1 & 0 \\
4 & 0 & 8
\end{array}\right],\left[\begin{array}{ccc}
3 & 5 & 8 \\
2 & 8 & -3
\end{array}\right]
$$

in the vector space $M_{2 \times 3}(\mathbb{R})$.
(b) Find a linear dependence relation among the vectors

$$
x^{3}+7 x+3, x^{3}+7 x^{2}+3, x^{3}-x^{2}-x, x^{3}+6 x^{2}-8 x
$$

in the vector space P_{3}.
14. Determine whether the given set of vectors is a basis for the indicated vector space.
(a) $\mathbb{R}^{3},\{(8,4,3),(1,-2,1),(-1,3,-1)\}$
(b) $P_{3},\left\{x+1, x^{2}+x, x^{3}+x^{2}, x^{3}+1\right\}$
(c) $C^{0}(\mathbb{R}),\{\cos x, \sin x, x \cos x, x \sin x\}$
15. Let T be the matrix transformation $T(\mathbf{x})=A \mathbf{x}$ with

$$
A=\left[\begin{array}{rrr}
-2 & 15 & 0 \\
-1 & 3 & 26 \\
0 & 0 & -5
\end{array}\right]
$$

Use a change of basis matrix to write a matrix representation for T with respect to the basis $\{(5,1,0),(10,-2,1),(0,3,0)\}$.
16. Consider the mapping $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 3}(\mathbb{R})$ defined by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{lll}
a & a & a-b \\
c & c & c-d
\end{array}\right] .
$$

Show that T is a linear transformation and find bases for the kernel and range of T.
17. Find all eigenvalues and eigenvectors of the given matrix.
(a) $\left[\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right]$
(b) $\left[\begin{array}{rrr}3 & 4 & -1 \\ -1 & -2 & 1 \\ 3 & 9 & 0\end{array}\right]$
18. Use diagonalization to compute A^{25} where

$$
A=\left[\begin{array}{rrr}
-1 & -2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

19. Find all values of the constant k so that the matrix

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & k & 2 \\
0 & 2 & k
\end{array}\right]
$$

has at least one repeated eigenvalue.
20. Diagonalize the matrix if possible, otherwise find its Jordan Canonical Form.

$$
A=\left[\begin{array}{lll}
4 & 0 & 4 \\
1 & 4 & 8 \\
0 & 0 & 5
\end{array}\right]
$$

Differential Equations

1. Convert the given equation into a first-order system of equations.
(a) $y^{\prime \prime}+4 y^{\prime}+4 y=\cos 2 t$
(b) $y^{\prime \prime \prime}-y^{\prime}+y=0$
2. Solve the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=(1,3)$, where

$$
A=\left[\begin{array}{ll}
-2 & 1 \\
-5 & 4
\end{array}\right]
$$

3. Find the general solution to the vector differential equation

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right] \mathbf{x}
$$

4. Solve the initial value problem $\mathbf{x}^{\prime}=A \mathrm{x}, \mathrm{x}(0)=(1,1)$ where

$$
A=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]
$$

5. Find the general solution to

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right] \mathbf{x}
$$

6. Solve the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=(2,4)$ where

$$
A=\left[\begin{array}{rr}
3 & 9 \\
-1 & -3
\end{array}\right]
$$

7. Solve

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rrr}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right] \mathbf{x}
$$

8. Solve

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rrr}
2 & 4 & 2 \\
-2 & -4 & -1 \\
-4 & -4 & -4
\end{array}\right] \mathbf{x}
$$

9. Determine the linearly independent solutions to the given differential equation of the form $y(x)=x^{r}$, and thereby determine the general solution to the differential equation on $(0, \infty)$.
(a) $x^{2} y^{\prime \prime}+3 x y^{\prime}-8 y=0, x>0$.
(b) $x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}-6 x y^{\prime}=0, x>0$.
10. Determine an annihilator for the given function.
(a) $F(x)=2 e^{x}-3 x$
(b) $F(x)=x^{3} e^{7 x}+5 \sin 4 x$
(c) $F(x)=e^{4 x}(x-2 \sin 5 x)+3 x-x^{2} e^{-2 x} \cos x$
(d) $F(x)=e^{-3 x}(2 \sin x+7 \cos x)$
11. Find the general solution to the differential equation.
(a) $(D+2)^{2} y=0$
(b) $y^{\prime \prime}+8 y^{\prime}+20 y=0$
(c) $y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=0$
(d) $y^{\prime \prime}-y^{\prime}-2 y=5 e^{2 x}$
(e) $y^{\prime \prime}+4 y=t^{2} \sin 2 t+(6 t+7) \cos 2 t$
(f) $y^{\prime \prime}+4 y^{\prime}+4 y=t e^{-2 t}-2 e^{2 t}$
12. Solve the initial value problem.
(a) $y^{\prime \prime}-8 y^{\prime}+16 y=0, y(0)=2, y^{\prime}(0)=7$.
(b) $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0, y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=2$.
13. Determine the motion of the spring-mass system governed by the given initial-value problem. Determine if the motion is underdamped, critically damped, or overdamped and make a sketch of it. Include any intercepts with the coordinate axes.
(a) $y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=3$.
(b) $4 y^{\prime \prime}+12 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=-3$.
(c) $y^{\prime \prime}+5 y^{\prime}+6 y=0, y(0)=-1, y^{\prime}(0)=4$.
14. Find an equation for and determine the period of the motion for the spring-mass system governed by the initial value problem

$$
y^{\prime \prime}+\frac{9}{16} y=55 \cos 2 t, y(0)=0, y^{\prime}(0)=9 .
$$

15. Find the general solution to the differential equation.
(a) $y^{\prime \prime}-6 y^{\prime}+9 y=15 e^{3 x} \sqrt{x}, x>0$.
(b) $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x^{2}}, x>0$.
