Complex-Valued Trial Solutions

Math 240 - Calculus III

Summer 2013, Session II

Tuesday, August 6, 2013

Motivating example

Example

Find the general solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=4 \cos 2 x
$$

1. Recall from yesterday that the complementary function is

$$
y_{c}(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}
$$

2. The right-hand side would be annihilated by $D^{2}+4$.
3. Since $\pm 2 i$ is not already a root of the auxiliary polynomial, use the trial solution $y_{p}(x)=c_{3} \cos 2 x+c_{4} \sin 2 x$.
4. Plugging y_{p} into the original equation yields $c_{3}=-\frac{5}{13}$ and $c_{4}=\frac{1}{13}$.
5. The general solution is

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}-\frac{5}{13} \cos 2 x+\frac{1}{13} \sin 2 x
$$

Motivating example

Example

Find the general solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=4 e^{2 i x}
$$

1. The complementary function is $y_{c}(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}$.
2. If we're using complex numbers, use the trial solution $y_{p}(x)=c_{3} e^{2 i x}$.
3. Plugging y_{p} into the original equation yields $c_{3}=-\frac{1}{13}(5+i)$.
4. Thus, the general solution is

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}-\frac{1}{13}(5+i) e^{2 i x} .
$$

Complex-valued trial solutions

Which problem was easier? Depends on your position on complex numbers, but the second only involved one unknown coefficient while the first had two. So it may be advantageous, when the nonhomogeneous term is $c x^{k} e^{a x} \cos b x$ or $c x^{k} e^{a x} \sin b x$, to change it to $c x^{k} e^{(a+b i) x}$, solve, and take the real or imaginary part.

Theorem
If $y(x)=u(x)+i v(x)$ is a complex-valued solution to

$$
P(D) y=F(x)+i G(x)
$$

then

$$
P(D) u=F(x) \quad \text { and } \quad P(D) v=G(x) .
$$

Proof.

If $y(x)=u(x)+i v(x)$, then

$$
P(D) y=P(D)(u+i v)=P(D) u+i P(D) v .
$$

Equating real and imaginary parts gives

$$
P(D) u=F(x) \quad \text { and } \quad P(D) v=G(x)
$$

Solutions to the nonhomogeneous polynomial differential equations

$$
P(D) y=c x^{k} e^{a x} \cos b x \quad \text { and } \quad P(D) y=c x^{k} e^{a x} \sin b x
$$

may be found by solving the complex equation

$$
P(D) z=c x^{k} e^{(a+b i) x}
$$

and then taking the real and imaginary parts, respectively, of the solution $z(x)$.

Bonus

Solve two equations at once!

Example

Solve $y^{\prime \prime}-2 y^{\prime}+5 y=8 e^{x} \sin 2 x$.

1. The complementary function is

$$
y_{c}(x)=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) .
$$

2. Instead, solve $z^{\prime \prime}-2 z^{\prime}+5 z=8 e^{(1+2 i) x}$.
3. Since $1+2 i$ is a root of the auxiliary polynomial, use the trial solution $z_{p}(x)=c_{3} x e^{(1+2 i) x}$.
4. Plugging z_{p} into $z^{\prime \prime}-2 z^{\prime}+5 z=8 e^{(1+2 i) x}$ yields $c_{3}=-2 i$.
5. Thus, the particular solution is

$$
z_{p}(x)=-2 i x e^{(1+2 i) x}=-2 x e^{x}(-\sin 2 x+i \cos 2 x)
$$

6 . To get $8 e^{x} \sin 2 x$ on the right-hand side, take the imaginary part

$$
y_{p}(x)=\operatorname{Im}\left(z_{p}\right)=-2 x e^{x} \cos 2 x .
$$

7. The general solution is

$$
y(x)=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)-2 x e^{x} \cos 2 x
$$

