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Introduction

We’ve learned how to find a matrix S so that S−1AS is almost
a diagonal matrix. Recall that diagonalization allows us to solve
linear systems of diff. eqs. because we can solve the equation

y′ = ay.

Jordan form will give us small systems that look like

y′1 = ay1 + y2,
y′2 = ay2.

Is there an obvious solution?

y1(t) = eat and y2(t) = 0.

A nontrivial one? Yes!

y1(t) = teat and y2(t) = eat.

Write this in the vector form[
y1
y2

]
= eat

(
t

[
1
0

]
+

[
0
1

])
.
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2× 2 defective systems

Switching back to the standard basis, these are the solutions

x1(t) = eatv1 and x2(t) = eat(tv1 + v2)

where v2,v1 is a chain of generalized eigenvectors.

Example

Find the general solution to

x′ = Ax, A =

[
0 1
−9 6

]
.

1. The single eigenvalue is λ = 3.

2. Chain of generalized e-vectors is v1 = (1, 3), v2 = (0, 1).

(A− 3I)v1 = 0 and (A− 3I)v2 = v1.

3. Fundamental set of solutions is therefore

x1(t) = e3tv1 and x2(t) = e3t (tv1 + v2) .
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Longer chains

What about chains of generalized eigenvectors longer than 2?

If A is an n× n matrix with eigenvalue λ and chain of
generalized eigenvectors

v1 = (A− λI)p−1v, v2 = (A− λI)p−2v, . . .
vp−1 = (A− λI)v, vp = v,

check that the following are solutions to x′ = Ax:

x1(t) = eλtv1

x2(t) = eλt (v2 + tv1)

...

xp(t) = eλt
(
vp + tvp−1 + · · ·+ 1

(p−1)! t
p−1v1

)
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Longer chains

We should also check that {x1(t), . . . ,xp(t)} is independent.
We know that {v1, . . . ,vp} is independent, that is,

det
([
v1 v2 · · · vn

])
6= 0.

Theorem
The set {x1(t), . . . ,xp(t)} is a linearly independent subset of
Vn(I).

Thus, we can construct a fundamental set of solutions by
applying the foregoing construction to each chain of
generalized eigenvectors.
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Example

Find the general solution to x′ = Ax if

A =

1 2 0
1 1 2
0 −1 1

 .
1. Only eigenvalue is λ = 1.

2. Yesterday we found the chain

v1 = (−2, 0, 1), v2 = (0,−1, 0), v3 = (−1, 0, 0).
3. Thus, solutions are

x1(t) = etv1,

x2(t) = et (v2 + tv1) ,

x3(t) = et
(
v3 + tv2 +

1
2 t

2v3

)
.
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Example

Find the general solution to x′ = Ax if

A =



2 1 0 0 0 0
0 2 0 0 0 0
0 0 5 0 0 0
0 0 0 5 1 0
0 0 0 0 5 1
0 0 0 0 0 5

 .

1. Eigenvalues are λ1 = 2 and λ2 = 5.

2. Eigenvectors and generalized eigenvectors are

Ae1 = 2e1, Ae2 = 2e2 + e1, Ae3 = 5e3,

Ae4 = 5e4, Ae5 = 5e5 + e4, Ae6 = 5e6 + e5.

3. Our fundamental set of solutions is

x1(t) = e2te1, x2(t) = e2t (e2 + te1) , x3(t) = e5te3,

x4(t) = e5te4, x5(t) = e5t (e5 + te4) ,

x6(t) = e5t
(
e6 + te5 +

1
2 t

2e6
)
.
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Introduction

We now turn our attention to solving linear differential
equations of order n. The general form of such an equation is

a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y = F (x),

where a0, a1, . . . , an, and F are functions defined on an
interval I.

The general strategy is to reformulate the above equation as

Ly = F,

where L is an appropriate linear transformation. In fact, L will
be a linear differential operator.
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Linear differential operators

Recall that the mapping D : C1(I)→ C0(I) defined by
D(f) = f ′ is a linear transformation. This D is called the
derivative operator. Higher order derivative operators
Dk : Ck(I)→ C0(I) are defined by composition:

Dk = D ◦Dk−1,

so that

Dk(f) =
dkf

dxk
.

A linear differential operator of order n is a linear
combination of derivative operators of order up to n,

L = Dn + a1D
n−1 + · · ·+ an−1D + an,

defined by

Ly = y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any,

where the ai are continous functions of x. L is then a linear
transformation L : Cn(I)→ C0(I). (Why?)
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Examples

Example

If L = D2 + 4xD − 3x, then

Ly = y′′ + 4xy′ − 3xy.

We have

L (sinx) = − sinx+ 4x cosx− 3x sinx,

L
(
x2
)
= 2 + 8x2 − 3x3.

Example

If L = D2 − e3xD, determine

1. L
(
2x− 3e2x

)
= −12e2x − 2e3x + 6e5x

2. L
(
3 sin2 x

)
= −3e3x sin 2x− 6 cos 2x
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Homogeneous and nonhomogeneous equations

Consider the general n-th order linear differential equation

a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y = F (x),

where a0 6= 0 and a0, a1, . . . , an, and F are functions on an
interval I.

If a0(x) is nonzero on I, then we may divide by it and relabel,
obtaining

y(n) + a1(x)y
(n−1) + · · ·+ an−1(x)y

′ + an(x)y = F (x),

which we rewrite as
Ly = F (x),

where L = Dn + a1D
n−1 + · · ·+ an−1D + an.

If F (x) is identically zero on I, then the equation is
homogeneous, otherwise it is nonhomogeneous.
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The general solution

If we have a homogeneous linear differential equation

Ly = 0,

its solution set will coincide with Ker(L). In particular, the
kernel of a linear transformation is a subspace of its domain.

Theorem
The set of solutions to a linear differential equation of order n
is a subspace of Cn(I). It is called the solution space. The
dimension of the solutions space is n.

Being a vector space, the solution space has a basis
{y1(x), y2(x), . . . , yn(x)} consisting of n solutions. Any
element of the vector space can be written as a linear
combination of basis vectors

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x).

This expression is called the general solution.
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The Wronskian

We can use the Wronskian

W [y1, y2, . . . , yn](x) =

∣∣∣∣∣∣∣∣∣
y1(x) y2(x) · · · yn(x)
y′1(x) y′2(x) · · · y′n(x)

...
...

. . .
...

y
(n−1)
1 (x) y

(n−1)
2 (x) · · · y

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
to determine whether a set of solutions is linearly independent.

Theorem
Let y1, y2, . . . , yn be solutions to the n-th order differential
equation Ly = 0 whose coefficients are continuous on I. If
W [y1, y2, . . . , yn](x) = 0 at any single point x ∈ I, then
{y1, y2, . . . , yn} is linearly dependent.

To summarize, the vanishing or nonvanishing of the Wronskian
on an interval completely characterizes the linear dependence
or independence of a set of solutions to Ly = 0.
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The Wronskian

Example

Verify that y1(x) = cos 2x and y2(x) = 3(1− 2 sin2 x) are
solutions to the differential equation y′′ + 4y = 0 on (−∞,∞).

Determine whether they are linearly independent on this
interval.

W [y1, y2](x) =

∣∣∣∣ cos 2x 3(1− 2 sin2 x)
−2 sin 2x −12 sinx cosx

∣∣∣∣
= −6 sin 2x cos 2x+ 6 sin 2x cos 2x = 0

They are linearly dependent. In fact, 3y1 − y2 = 0.
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Nonhomogeneous equations

Consider the nonhomogeneous linear differential equation
Ly = F . The associated homogeneous equation is Ly = 0.

Theorem
Suppose {y1, y2, . . . , yn} are n linearly independent solutions to
the n-th order equation Ly = 0 on an interval I, and y = yp is
any particular solution to Ly = F on I. Then every solution to
Ly = F on I is of the form

y = ︸ ︷︷ ︸c1y1 + c2y2 + · · ·+ cnyn + yp,

= yc + yp

for appropriate constants c1, c2, . . . , cn.

This expression is the general solution to Ly = F . The
components of the general solution are

I the complementary function, yc, which is the general
solution to the associated homogeneous equation,

I the particular solution, yp.
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Something slightly new

Theorem
If y = up and y = vp are particular solutions to Ly = f(x) and
Ly = g(x), respectively, then y = up + vp is a solution to
Ly = f(x) + g(x).

Proof.
We have L(up + vp) = L(up) + L(vp) = f(x) + g(x). Q.E .D.
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A taste of what’s to come

Example

Determine all solutions to the differential equation
y′′ + y′ − 6y = 0 of the form y(x) = erx, where r is a constant.

Substituting y(x) = erx into the equation yields

erx(r2 + r − 6) = r2erx + rerx − 6erx = 0.

Since erx 6= 0, we just need (r + 3)(r − 2) = 0. Hence, the two
solutions of this form are

y1(x) = e2x and y2(x) = e−3x.

Could this be a basis for the solution space? Check linear
independence. Yes! The general solution is

y(x) = c1e
2x + c2e

−3x.
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A taste of what’s to come

Example

Determine the general solution to the differential equation

y′′ + y′ − 6y = 8e5x.

We know the complementary function,

yc(x) = c1e
2x + c2e

−3x.

For the particular solution, we might guess something of the
form yp(x) = ce5x. What should c be? We want

8e5x = y′′p + y′p − 6yp = (25c+ 5c− 6c)e5x.

Cancel e5x and then solve 8 = 24c to find c = 1
3 .

The general solution is

y(x) = c1e
2x + c2e

−3x + 1
3e

5x.
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