Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week Vector Differential Equations: Defective Coefficient Matrix and Higher Order Linear Differential Equations

Math 240 — Calculus III

Summer 2013, Session II

Thursday, August 1, 2013

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week $1. \ Vector \ differential \ equations: \ defective \ coefficient \ matrix$

 Linear differential equations of order n Linear differential operators Familiar stuff A taste of what's to come

Introduction

Linear DE Math 240

Defective

Coefficient Matrices and

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week

We've learned how to find a matrix S so that $S^{-1}AS$ is almost a diagonal matrix. Recall that diagonalization allows us to solve linear systems of diff. eqs. because we can solve the equation

$$y' = ay.$$

Jordan form will give us small systems that look like

$$y_1' = ay_1 + y_2,$$

$$y_2' = ay_2.$$

Is there an obvious solution?

$$y_1(t) = e^{at}$$
 and $y_2(t) = 0$.

A nontrivial one? Yes!

$$y_1(t) = te^{at}$$
 and $y_2(t) = e^{at}$.

Write this in the vector form

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = e^{at} \left(t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right).$$

2×2 defective systems

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week Switching back to the standard basis, these are the solutions $\mathbf{x}_1(t) = e^{at}\mathbf{v}_1$ and $\mathbf{x}_2(t) = e^{at}(t\mathbf{v}_1 + \mathbf{v}_2)$

where $\mathbf{v}_2, \mathbf{v}_1$ is a chain of generalized eigenvectors.

Example

Find the general solution to

$$\mathbf{x}' = A\mathbf{x}, \quad A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}.$$

- 1. The single eigenvalue is $\lambda = 3$.
- 2. Chain of generalized e-vectors is $\mathbf{v}_1 = (1,3)$, $\mathbf{v}_2 = (0,1)$. $(A - 3I)\mathbf{v}_1 = \mathbf{0}$ and $(A - 3I)\mathbf{v}_2 = \mathbf{v}_1$.
- 3. Fundamental set of solutions is therefore

$$\mathbf{x}_1(t) = e^{3t}\mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{3t}\left(t\mathbf{v}_1 + \mathbf{v}_2\right)$.

Longer chains

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week What about chains of generalized eigenvectors longer than 2? If A is an $n \times n$ matrix with eigenvalue λ and chain of generalized eigenvectors

$$\mathbf{v}_1 = (A - \lambda I)^{p-1} \mathbf{v}, \qquad \mathbf{v}_2 = (A - \lambda I)^{p-2} \mathbf{v}, \dots$$
$$\mathbf{v}_{p-1} = (A - \lambda I) \mathbf{v}, \qquad \mathbf{v}_p = \mathbf{v},$$

check that the following are solutions to $\mathbf{x}' = A\mathbf{x}$:

$$\mathbf{x}_{1}(t) = e^{\lambda t} \mathbf{v}_{1}$$
$$\mathbf{x}_{2}(t) = e^{\lambda t} (\mathbf{v}_{2} + t\mathbf{v}_{1})$$
$$\vdots$$
$$\mathbf{x}_{p}(t) = e^{\lambda t} \left(\mathbf{v}_{p} + t\mathbf{v}_{p-1} + \dots + \frac{1}{(p-1)!} t^{p-1} \mathbf{v}_{1} \right)$$

Longer chains

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week We should also check that $\{\mathbf{x}_1(t), \dots, \mathbf{x}_p(t)\}$ is independent. We know that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is independent, that is, $\det ([\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n]) \neq 0.$

Theorem

The set $\{\mathbf{x}_1(t), \ldots, \mathbf{x}_p(t)\}\$ is a linearly independent subset of $V_n(I).$

Thus, we can construct a fundamental set of solutions by applying the foregoing construction to each chain of generalized eigenvectors.

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week

Find the general solution to $\mathbf{x}' = A\mathbf{x}$ if

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix}.$$

- 1. Only eigenvalue is $\lambda = 1$.
- 2. Yesterday we found the chain

$$\mathbf{v}_1 = (-2, 0, 1), \ \mathbf{v}_2 = (0, -1, 0), \ \mathbf{v}_3 = (-1, 0, 0).$$

3. Thus, solutions are

$$\begin{aligned} \mathbf{x}_1(t) &= e^t \mathbf{v}_1, \\ \mathbf{x}_2(t) &= e^t \left(\mathbf{v}_2 + t \mathbf{v}_1 \right), \\ \mathbf{x}_3(t) &= e^t \left(\mathbf{v}_3 + t \mathbf{v}_2 + \frac{1}{2} t^2 \mathbf{v}_3 \right). \end{aligned}$$

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week

Find the general solution to $\mathbf{x}' = A\mathbf{x}$ if

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

٠

1. Eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 5$.

2. Eigenvectors and generalized eigenvectors are

$$A\mathbf{e}_1 = 2\mathbf{e}_1, \quad A\mathbf{e}_2 = 2\mathbf{e}_2 + \mathbf{e}_1, \quad A\mathbf{e}_3 = 5\mathbf{e}_3, \\ A\mathbf{e}_4 = 5\mathbf{e}_4, \quad A\mathbf{e}_5 = 5\mathbf{e}_5 + \mathbf{e}_4, \quad A\mathbf{e}_6 = 5\mathbf{e}_6 + \mathbf{e}_5.$$

3. Our fundamental set of solutions is

$$\begin{aligned} \mathbf{x}_{1}(t) &= e^{2t}\mathbf{e}_{1}, \quad \mathbf{x}_{2}(t) = e^{2t} \left(\mathbf{e}_{2} + t\mathbf{e}_{1}\right), \quad \mathbf{x}_{3}(t) = e^{5t}\mathbf{e}_{3}, \\ \mathbf{x}_{4}(t) &= e^{5t}\mathbf{e}_{4}, \quad \mathbf{x}_{5}(t) = e^{5t} \left(\mathbf{e}_{5} + t\mathbf{e}_{4}\right), \\ \mathbf{x}_{6}(t) &= e^{5t} \left(\mathbf{e}_{6} + t\mathbf{e}_{5} + \frac{1}{2}t^{2}\mathbf{e}_{6}\right). \end{aligned}$$

Introduction

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week We now turn our attention to solving **linear differential** equations of order n. The general form of such an equation is $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = F(x)$, where a_0, a_1, \ldots, a_n , and F are functions defined on an interval I.

The general strategy is to reformulate the above equation as

$$Ly = F$$
,

where L is an appropriate linear transformation. In fact, L will be a *linear differential operator*.

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week Linear differential operators

Recall that the mapping $D: C^1(I) \to C^0(I)$ defined by D(f) = f' is a linear transformation. This D is called the **derivative operator.** Higher order derivative operators $D^k: C^k(I) \to C^0(I)$ are defined by composition:

 $D^k = D \circ D^{k-1},$

so that

$$D^k(f) = \frac{d^k f}{dx^k}.$$

A linear differential operator of order n is a linear combination of derivative operators of order up to n,

$$L = D^{n} + a_1 D^{n-1} + \dots + a_{n-1} D + a_n,$$

defined by

$$Ly = y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y,$$

where the a_i are continous functions of x. L is then a linear transformation $L: C^n(I) \to C^0(I)$. (Why?)

Examples

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff

Next week

We have

$$L(\sin x) = -\sin x + 4x\cos x - 3x\sin x, L(x^{2}) = 2 + 8x^{2} - 3x^{3}.$$

Example If $L = D^2$

f
$$L = D^2 - e^{3x}D$$
, determine
1. $L(2x - 3e^{2x}) = -12e^{2x} - 2e^{3x} + 6e^{5x}$
2. $L(3\sin^2 x) = -3e^{3x}\sin 2x - 6\cos 2x$

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff

Next week

Homogeneous and nonhomogeneous equations

Consider the general *n*-th order linear differential equation $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = F(x)$, where $a_0 \neq 0$ and a_0, a_1, \ldots, a_n , and F are functions on an interval I.

If $a_0(\boldsymbol{x})$ is nonzero on I, then we may divide by it and relabel, obtaining

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = F(x),$$

which we rewrite as

$$Ly = F(x),$$

where $L = D^n + a_1 D^{n-1} + \dots + a_{n-1} D + a_n$.

If F(x) is identically zero on I, then the equation is **homogeneous**, otherwise it is **nonhomogeneous**.

The general solution

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff

Next week

If we have a homogeneous linear differential equation

Ly = 0,

its solution set will coincide with Ker(L). In particular, the kernel of a linear transformation is a subspace of its domain.

Theorem

The set of solutions to a linear differential equation of order n is a subspace of $C^n(I)$. It is called the **solution space**. The dimension of the solutions space is n.

Being a vector space, the solution space has a basis $\{y_1(x), y_2(x), \ldots, y_n(x)\}$ consisting of n solutions. Any element of the vector space can be written as a linear combination of basis vectors

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x).$$

This expression is called the general solution.

The Wronskian

Linear DE Math 240

Defective

Coefficient Matrices and

Defective Coefficient Matrices

Linear DE

Linear differential operators

Familiar stuff Next week

to determine whether a set of solutions is linearly independent.

Theorem

We can use the Wronskian

Let y_1, y_2, \ldots, y_n be solutions to the *n*-th order differential equation Ly = 0 whose coefficients are continuous on *I*. If $W[y_1, y_2, \ldots, y_n](x) = 0$ at any single point $x \in I$, then $\{y_1, y_2, \ldots, y_n\}$ is linearly dependent.

To summarize, the vanishing or nonvanishing of the Wronskian on an interval *completely characterizes* the linear dependence or independence of a set of solutions to Ly = 0.

The Wronskian

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff

Example

Verify that $y_1(x) = \cos 2x$ and $y_2(x) = 3(1 - 2\sin^2 x)$ are solutions to the differential equation y'' + 4y = 0 on $(-\infty, \infty)$.

Determine whether they are linearly independent on this interval.

$$W[y_1, y_2](x) = \begin{vmatrix} \cos 2x & 3(1 - 2\sin^2 x) \\ -2\sin 2x & -12\sin x \cos x \end{vmatrix}$$
$$= -6\sin 2x \cos 2x + 6\sin 2x \cos 2x = 0$$
They are linearly dependent. In fact, $3y_1 - y_2 = 0$.

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff

Next week

Consider the nonhomogeneous linear differential equation Ly = F. The **associated homogeneous equation** is Ly = 0.

Theorem

Suppose $\{y_1, y_2, \ldots, y_n\}$ are *n* linearly independent solutions to the *n*-th order equation Ly = 0 on an interval *I*, and $y = y_p$ is any particular solution to Ly = F on *I*. Then every solution to Ly = F on *I* is of the form

$$y = \underbrace{c_1 y_1 + c_2 y_2 + \dots + c_n y_n}_{y_c} + y_p,$$

for appropriate constants c_1, c_2, \ldots, c_n .

This expression is the **general solution** to Ly = F. The components of the general solution are

- ► the complementary function, y_c, which is the general solution to the associated homogeneous equation,
- the particular solution, y_p .

Something slightly new

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff

Next week

Theorem

If $y = u_p$ and $y = v_p$ are particular solutions to Ly = f(x) and Ly = g(x), respectively, then $y = u_p + v_p$ is a solution to Ly = f(x) + g(x).

Proof.

We have $L(u_p + v_p) = L(u_p) + L(v_p) = f(x) + g(x)$. Q.E.D.

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuf Next week

A taste of what's to come

Example

Determine all solutions to the differential equation y'' + y' - 6y = 0 of the form $y(x) = e^{rx}$, where r is a constant.

Substituting $y(x) = e^{rx}$ into the equation yields

$$e^{rx}(r^2 + r - 6) = r^2 e^{rx} + r e^{rx} - 6e^{rx} = 0.$$

Since $e^{rx} \neq 0,$ we just need (r+3)(r-2)=0. Hence, the two solutions of this form are

$$y_1(x) = e^{2x}$$
 and $y_2(x) = e^{-3x}$.

Could this be a basis for the solution space? Check linear independence. Yes! The general solution is

$$y(x) = c_1 e^{2x} + c_2 e^{-3x}.$$

Math 240

Defective Coefficient Matrices

Linear DE

Linear differential operators Familiar stuff Next week

A taste of what's to come

Example

Determine the general solution to the differential equation

$$y'' + y' - 6y = 8e^{5x}.$$

We know the complementary function,

$$y_c(x) = c_1 e^{2x} + c_2 e^{-3x}$$

For the particular solution, we might guess something of the form $y_p(x) = ce^{5x}$. What should c be? We want $8e^{5x} = y_p'' + y_p' - 6y_p = (25c + 5c - 6c)e^{5x}$.

Cancel e^{5x} and then solve 8 = 24c to find $c = \frac{1}{3}$.

The general solution is

$$y(x) = c_1 e^{2x} + c_2 e^{-3x} + \frac{1}{3} e^{5x}.$$

