Defective
Coefficient Matrices and Linear DE

Math 240

Defective
Coefficient
Matrices
Linear DE
Linear
differential
operators
Familiar stuff
Next week

Vector Differential Equations: Defective Coefficient Matrix and
 Higher Order Linear Differential Equations

$$
\text { Math } 240 \text { - Calculus III }
$$

Summer 2013, Session II
Thursday, August 1, 2013

We've learned how to find a matrix S so that $S^{-1} A S$ is almost a diagonal matrix. Recall that diagonalization allows us to solve linear systems of diff. eqs. because we can solve the equation

$$
y^{\prime}=a y
$$

Jordan form will give us small systems that look like

$$
\begin{aligned}
& y_{1}^{\prime}=a y_{1}+y_{2}, \\
& y_{2}^{\prime}= \\
& a y_{2} .
\end{aligned}
$$

Is there an obvious solution?

$$
y_{1}(t)=e^{a t} \text { and } y_{2}(t)=0 .
$$

A nontrivial one? Yes!

$$
y_{1}(t)=t e^{a t} \text { and } y_{2}(t)=e^{a t} .
$$

Write this in the vector form

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=e^{a t}\left(t\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) .
$$

$$
\mathbf{x}_{1}(t)=e^{3 t} \mathbf{v}_{1} \text { and } \mathbf{x}_{2}(t)=e^{3 t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)
$$

3. Fundamental set of solutions is therefore
4. The single eigenvalue is $\lambda=3$.
5. Chain of generalized e-vectors is $\mathbf{v}_{1}=(1,3), \mathbf{v}_{2}=(0,1)$.

$$
(A-3 I) \mathbf{v}_{1}=\mathbf{0} \text { and }(A-3 I) \mathbf{v}_{2}=\mathbf{v}_{1}
$$

What about chains of generalized eigenvectors longer than 2 ?
If A is an $n \times n$ matrix with eigenvalue λ and chain of generalized eigenvectors

$$
\begin{aligned}
\mathbf{v}_{1} & =(A-\lambda I)^{p-1} \mathbf{v}, & & \mathbf{v}_{2}=(A-\lambda I)^{p-2} \mathbf{v}, \ldots \\
\mathbf{v}_{p-1} & =(A-\lambda I) \mathbf{v}, & & \mathbf{v}_{p}=\mathbf{v},
\end{aligned}
$$

check that the following are solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$:

$$
\begin{aligned}
\mathbf{x}_{1}(t) & =e^{\lambda t} \mathbf{v}_{1} \\
\mathbf{x}_{2}(t) & =e^{\lambda t}\left(\mathbf{v}_{2}+t \mathbf{v}_{1}\right) \\
& \vdots \\
\mathbf{x}_{p}(t) & =e^{\lambda t}\left(\mathbf{v}_{p}+t \mathbf{v}_{p-1}+\cdots+\frac{1}{(p-1)!} t^{p-1} \mathbf{v}_{1}\right)
\end{aligned}
$$ Matrices and Linear DE

Math 240

We should also check that $\left\{\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{p}(t)\right\}$ is independent. We know that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is independent, that is,

$$
\operatorname{det}\left(\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\right) \neq 0
$$

Theorem
The set $\left\{\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{p}(t)\right\}$ is a linearly independent subset of $V_{n}(I)$.

Thus, we can construct a fundamental set of solutions by applying the foregoing construction to each chain of generalized eigenvectors.

Defective Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrices

Example

Find the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ if

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & -1 & 1
\end{array}\right]
$$

1. Only eigenvalue is $\lambda=1$.
2. Yesterday we found the chain

$$
\mathbf{v}_{1}=(-2,0,1), \mathbf{v}_{2}=(0,-1,0), \mathbf{v}_{3}=(-1,0,0)
$$

3. Thus, solutions are

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{t} \mathbf{v}_{1} \\
& \mathbf{x}_{2}(t)=e^{t}\left(\mathbf{v}_{2}+t \mathbf{v}_{1}\right), \\
& \mathbf{x}_{3}(t)=e^{t}\left(\mathbf{v}_{3}+t \mathbf{v}_{2}+\frac{1}{2} t^{2} \mathbf{v}_{3}\right) .
\end{aligned}
$$

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ if

$$
A=\left[\begin{array}{llllll}
2 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 1 & 0 \\
0 & 0 & 0 & 0 & 5 & 1 \\
0 & 0 & 0 & 0 & 0 & 5
\end{array}\right]
$$

1. Eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=5$.
2. Eigenvectors and generalized eigenvectors are

$$
\begin{array}{lll}
A \mathbf{e}_{1}=2 \mathbf{e}_{1}, & A \mathbf{e}_{2}=2 \mathbf{e}_{2}+\mathbf{e}_{1}, & A \mathbf{e}_{3}=5 \mathbf{e}_{3}, \\
A \mathbf{e}_{4}=5 \mathbf{e}_{4}, & A \mathbf{e}_{5}=5 \mathbf{e}_{5}+\mathbf{e}_{4}, & A \mathbf{e}_{6}=5 \mathbf{e}_{6}+\mathbf{e}_{5} .
\end{array}
$$

3. Our fundamental set of solutions is

$$
\begin{gathered}
\mathbf{x}_{1}(t)=e^{2 t} \mathbf{e}_{1}, \quad \mathbf{x}_{2}(t)=e^{2 t}\left(\mathbf{e}_{2}+t \mathbf{e}_{1}\right), \quad \mathbf{x}_{3}(t)=e^{5 t} \mathbf{e}_{3} \\
\mathbf{x}_{4}(t)=e^{5 t} \mathbf{e}_{4}, \quad \mathbf{x}_{5}(t)=e^{5 t}\left(\mathbf{e}_{5}+t \mathbf{e}_{4}\right) \\
\mathbf{x}_{6}(t)=e^{5 t}\left(\mathbf{e}_{6}+t \mathbf{e}_{5}+\frac{1}{2} t^{2} \mathbf{e}_{6}\right)
\end{gathered}
$$

We now turn our attention to solving linear differential equations of order n. The general form of such an equation is

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)
$$

where $a_{0}, a_{1}, \ldots, a_{n}$, and F are functions defined on an interval I.

The general strategy is to reformulate the above equation as

$$
L y=F
$$

where L is an appropriate linear transformation. In fact, L will be a linear differential operator.
so that

$$
D^{k}(f)=\frac{d^{k} f}{d x^{k}} .
$$

A linear differential operator of order n is a linear combination of derivative operators of order up to n,

$$
L=D^{n}+a_{1} D^{n-1}+\cdots+a_{n-1} D+a_{n}
$$

defined by

$$
L y=y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y
$$

where the a_{i} are continous functions of $x . L$ is then a linear transformation $L: C^{n}(I) \rightarrow C^{0}(I)$. (Why?)

Defective Coefficient Matrices and Linear DE

Math 240

Defective
Coefficient
Matrices
Linear DE Linear differential operators

$$
\begin{aligned}
L(\sin x) & =-\sin x+4 x \cos x-3 x \sin x \\
L\left(x^{2}\right) & =2+8 x^{2}-3 x^{3}
\end{aligned}
$$

Example

If $L=D^{2}-e^{3 x} D$, determine

1. $L\left(2 x-3 e^{2 x}\right)=-12 e^{2 x}-2 e^{3 x}+6 e^{5 x}$
2. $L\left(3 \sin ^{2} x\right)=-3 e^{3 x} \sin 2 x-6 \cos 2 x$

Example

If $L=D^{2}+4 x D-3 x$, then

$$
L y=y^{\prime \prime}+4 x y^{\prime}-3 x y
$$

We have

Defective Coefficient Matrices and Linear DE

Math 240

Coefficient Matrices

Homogeneous and nonhomogeneous equations

Consider the general n-th order linear differential equation

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)
$$

where $a_{0} \neq 0$ and $a_{0}, a_{1}, \ldots, a_{n}$, and F are functions on an interval I.

If $a_{0}(x)$ is nonzero on I, then we may divide by it and relabel, obtaining

$$
y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)
$$

which we rewrite as

$$
L y=F(x)
$$

where $L=D^{n}+a_{1} D^{n-1}+\cdots+a_{n-1} D+a_{n}$.
If $F(x)$ is identically zero on I, then the equation is homogeneous, otherwise it is nonhomogeneous.

If we have a homogeneous linear differential equation

$$
L y=0,
$$

its solution set will coincide with $\operatorname{Ker}(L)$. In particular, the kernel of a linear transformation is a subspace of its domain.

Theorem

The set of solutions to a linear differential equation of order n is a subspace of $C^{n}(I)$. It is called the solution space. The dimension of the solutions space is n.
Being a vector space, the solution space has a basis $\left\{y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right\}$ consisting of n solutions. Any element of the vector space can be written as a linear combination of basis vectors

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

This expression is called the general solution.

We can use the Wronskian

$$
W\left[y_{1}, y_{2}, \ldots, y_{n}\right](x)=\left|\begin{array}{cccc}
y_{1}(x) & y_{2}(x) & \cdots & y_{n}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x) & \cdots & y_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x)
\end{array}\right|
$$

to determine whether a set of solutions is linearly independent.

Theorem

Let $y_{1}, y_{2}, \ldots, y_{n}$ be solutions to the n-th order differential equation $L y=0$ whose coefficients are continuous on I. If $W\left[y_{1}, y_{2}, \ldots, y_{n}\right](x)=0$ at any single point $x \in I$, then $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is linearly dependent.
To summarize, the vanishing or nonvanishing of the Wronskian on an interval completely characterizes the linear dependence or independence of a set of solutions to $L y=0$.

Example

Verify that $y_{1}(x)=\cos 2 x$ and $y_{2}(x)=3\left(1-2 \sin ^{2} x\right)$ are solutions to the differential equation $y^{\prime \prime}+4 y=0$ on $(-\infty, \infty)$.

Determine whether they are linearly independent on this interval.

$$
\begin{aligned}
W\left[y_{1}, y_{2}\right](x) & =\left|\begin{array}{cc}
\cos 2 x & 3\left(1-2 \sin ^{2} x\right) \\
-2 \sin 2 x & -12 \sin x \cos x
\end{array}\right| \\
& =-6 \sin 2 x \cos 2 x+6 \sin 2 x \cos 2 x=0
\end{aligned}
$$

They are linearly dependent. In fact, $3 y_{1}-y_{2}=0$.

Consider the nonhomogeneous linear differential equation $L y=F$. The associated homogeneous equation is $L y=0$.

Theorem

Suppose $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ are n linearly independent solutions to the n-th order equation $L y=0$ on an interval I, and $y=y_{p}$ is any particular solution to $L y=F$ on I. Then every solution to $L y=F$ on I is of the form

$$
\begin{aligned}
y & =\underbrace{c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}}_{y_{c}} \\
& =y_{p}, \\
& +y_{p}
\end{aligned}
$$

for appropriate constants $c_{1}, c_{2}, \ldots, c_{n}$.
This expression is the general solution to $L y=F$. The components of the general solution are

- the complementary function, y_{c}, which is the general solution to the associated homogeneous equation,
- the particular solution, y_{p}.

Defective Coefficient Matrices and Linear DE

Math 240

Defective

Coefficient Matrices

Linear DE

Something slightly new

Theorem
If $y=u_{p}$ and $y=v_{p}$ are particular solutions to $L y=f(x)$ and $L y=g(x)$, respectively, then $y=u_{p}+v_{p}$ is a solution to $L y=f(x)+g(x)$.

Proof.
We have $L\left(u_{p}+v_{p}\right)=L\left(u_{p}\right)+L\left(v_{p}\right)=f(x)+g(x)$. Q.E.D.

Could this be a basis for the solution space? Check linear independence. Yes! The general solution is
Since $e^{r x} \neq 0$, we just need $(r+3)(r-2)=0$. Hence, the two solutions of this form are

$$
y_{1}(x)=e^{2 x} \quad \text { and } \quad y_{2}(x)=e^{-3 x} .
$$

Substituting $y(x)=e^{r x}$ into the equation yields

$$
e^{r x}\left(r^{2}+r-6\right)=r^{2} e^{r x}+r e^{r x}-6 e^{r x}=0 .
$$

Determine all solutions to the differential equation $y^{\prime \prime}+y^{\prime}-6 y=0$ of the form $y(x)=e^{r x}$, where r is a constant.

Example

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x} .
$$

Example

Determine the general solution to the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=8 e^{5 x}
$$

We know the complementary function,

$$
y_{c}(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

For the particular solution, we might guess something of the form $y_{p}(x)=c e^{5 x}$. What should c be? We want

$$
8 e^{5 x}=y_{p}^{\prime \prime}+y_{p}^{\prime}-6 y_{p}=(25 c+5 c-6 c) e^{5 x} .
$$

Cancel $e^{5 x}$ and then solve $8=24 c$ to find $c=\frac{1}{3}$.
The general solution is

$$
y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}+\frac{1}{3} e^{5 x} .
$$

