Generalized Eigenvectors

$$
\text { Math } 240 \text { - Calculus III }
$$

Summer 2013, Session II
Wednesday, July 31, 2013

Generalized

Math 240

Definition

Computation
and Properties
Chains

1. Definition
2. Computation and Properties
3. Chains

4nd

弯

Defective matrices cannot be diagonalized because they do not possess enough eigenvectors to make a basis. How can we correct this defect?

Example

The matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is defective.

1. Only eigenvalue is $\lambda=1$.
2. $A-I=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
3. Single eigenvector $\mathbf{v}=(1,0)$.
4. We could use $\mathbf{u}=(0,1)$ to complete a basis.
5. Notice that $(A-I) \mathbf{u}=\mathbf{v}$ and $(A-I)^{2} \mathbf{u}=\mathbf{0}$.

Maybe we just didn't multiply by $A-\lambda I$ enough times.

Definition

If A is an $n \times n$ matrix, a generalized eigenvector of A corresponding to the eigenvalue λ is a nonzero vector \mathbf{x} satisfying

$$
(A-\lambda I)^{p} \mathbf{x}=\mathbf{0}
$$

for some positive integer p. Equivalently, it is a nonzero element of the nullspace of $(A-\lambda I)^{p}$.

Example

- Eigenvectors are generalized eigenvectors with $p=1$.
- In the previous example we saw that $\mathbf{v}=(1,0)$ and $\mathbf{u}=(0,1)$ are generalized eigenvectors for

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and } \lambda=1
$$

Example

Determine generalized eigenvectors for the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

1. Characteristic polynomial is $(3-\lambda)(1-\lambda)^{2}$.
2. Eigenvalues are $\lambda=1,3$.
3. Eigenvectors are

$$
\begin{array}{ll}
\lambda_{1}=3: & \mathbf{v}_{1}=(1,2,2), \\
\lambda_{2}=1: & \mathbf{v}_{2}=(1,0,0) .
\end{array}
$$

4. Final generalized eigenvector will a vector $\mathbf{v}_{3} \neq \mathbf{0}$ such that

$$
\left(A-\lambda_{2} I\right)^{2} \mathbf{v}_{3}=\mathbf{0} \text { but }\left(A-\lambda_{2} I\right) \mathbf{v}_{3} \neq \mathbf{0}
$$

Pick $\mathbf{v}_{3}=(0,1,0)$. Note that $\left(A-\lambda_{2} I\right) \mathbf{v}_{3}=\mathbf{v}_{2}$.

Facts about generalized eigenvectors

How many powers of $(A-\lambda I)$ do we need to compute in order to find all of the generalized eigenvectors for λ ?

Fact

If A is an $n \times n$ matrix and λ is an eigenvalue with algebraic multiplicity k, then the set of generalized eigenvectors for λ consists of the nonzero elements of nullspace $\left((A-\lambda I)^{k}\right)$. In other words, we need to take at most k powers of $A-\lambda I$ to find all of the generalized eigenvectors for λ.

Definition

Computation and Properties

Example

Determine generalized eigenvectors for the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & -1 & 1
\end{array}\right]
$$

1. Single eigenvalue of $\lambda=1$.
2. Single eigenvector $\mathbf{v}_{1}=(-2,0,1)$.
3. Look at

$$
(A-I)^{2}=\left[\begin{array}{rrr}
2 & 0 & 4 \\
0 & 0 & 0 \\
-1 & 0 & -2
\end{array}\right]
$$

to find generalized eigenvector $\mathbf{v}_{2}=(0,1,0)$.
4. Finally, $(A-I)^{3}=\mathbf{0}$, so we get $\mathbf{v}_{3}=(1,0,0)$.

Facts about generalized eigenvectors

The aim of generalized eigenvectors was to enlarge a set of linearly independent eigenvectors to make a basis. Are there always enough generalized eigenvectors to do so?

Fact

If λ is an eigenvalue of A with algebraic multiplicity k, then

$$
\text { nullity }\left((A-\lambda I)^{k}\right)=k
$$

In other words, there are k linearly independent generalized eigenvectors for λ.

Corollary
If A is an $n \times n$ matrix, then there is a basis for \mathbb{R}^{n} consisting of generalized eigenvectors of A.

Computing generalized eigenvectors

Definition

Computation and Properties

Example

Determine generalized eigenvectors for the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & -1 & 1
\end{array}\right]
$$

1. From last time, we have eigenvalue $\lambda=1$ and eigenvector $\mathbf{v}_{1}=(-2,0,1)$.
2. Solve $(A-I) \mathbf{v}_{2}=\mathbf{v}_{1}$ to get $\mathbf{v}_{2}=(0,-1,0)$.
3. Solve $(A-I) \mathbf{v}_{3}=\mathbf{v}_{2}$ to get $\mathbf{v}_{3}=(-1,0,0)$.

Chains of generalized eigenvectors

Let A be an $n \times n$ matrix and \mathbf{v} a generalized eigenvector of A corresponding to the eigenvalue λ. This means that

$$
(A-\lambda I)^{p} \mathbf{v}=\mathbf{0}
$$

for a positive integer p.
If $0 \leq q<p$, then

$$
(A-\lambda I)^{p-q}(A-\lambda I)^{q} \mathbf{v}=\mathbf{0}
$$

That is, $(A-\lambda I)^{q} \mathbf{v}$ is also a generalized eigenvector corresponding to λ for $q=0,1, \ldots, p-1$.

Definition

If p is the smallest positive integer such that $(A-\lambda I)^{p} \mathbf{v}=\mathbf{0}$, then the sequence

$$
(A-\lambda I)^{p-1} \mathbf{v}, \quad(A-\lambda I)^{p-2} \mathbf{v}, \ldots, \quad(A-\lambda I) \mathbf{v}, \mathbf{v}
$$

is called a chain or cycle of generalized eigenvectors. The integer p is called the length of the cycle.

Chains of generalized eigenvectors

Math 240

Definition

Computation and Properties Chains

Example

In the previous example,

$$
A-\lambda I=\left[\begin{array}{ccc}
0 & 2 & 0 \\
1 & 0 & 2 \\
0 & -1 & 0
\end{array}\right]
$$

and we found the chain

$$
\mathbf{v}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right],(A-\lambda I) \mathbf{v}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right],(A-\lambda I)^{2} \mathbf{v}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

Fact
The generalized eigenvectors in a chain are linearly independent.

Jordan canonical form

Definition

What's the analogue of diagonalization for defective matrices? That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ are the linearly independent generalized eigenvectors of A, what does the matrix $S^{-1} A S$ look like, where $S=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$?

