Solving linear systems by diagonalization Real e-vals

Vector Differential Equations: Nondefective Coefficient Matrix

Math 240 — Calculus III

Summer 2013, Session II

Tuesday, July 30, 2013

Solving linear systems by diagonalization Real e-vals Complex e-vals

> 1. Solving linear systems by diagonalization Real eigenvalues Complex eigenvalues

Agenda

Solving linear systems by diagonalization Real e-vals

The results discussed yesterday apply to any old vector differential equation

 $\mathbf{x}' = A\mathbf{x}.$

In order to make some headway in solving them, however, we must make a simplifying assumption:

The coefficient matrix A consists of real *constants*.

Diagonalization

.

Vector Differential Equations: Nondefective Coefficient Matrix Math 240

Solving linear systems by diagonalization

Real e-vals Complex e-vals Recall that an $n\times n$ matrix A may be diagonalized if and only if it is nondefective.

When this happens, we can solve the homogeneous vector differential equation

$$\mathbf{x}' = A\mathbf{x}.$$

If
$$S^{-1}AS = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$
, then
 $\mathbf{x} = S\mathbf{y}$, where $\mathbf{y} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ c_2 e^{\lambda_2 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$

Solving linear systems by diagonalization

Real e-vals Complex e-vals

Example

Solve the linear system

$$\begin{aligned}
 x'_1 &= 2x_1 + x_2, \\
 x'_2 &= -3x_1 - 2x_2.
 \end{aligned}$$

1. Turn it into the vector differential equation $\mathbf{x}' = A\mathbf{x}$, where $A = \begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix}$.

- 2. The characteristic polynomial of A is $\lambda^2 1$.
- 3. Eigenvalues are $\lambda = \pm 1$.
- 4. Eigenvectors are

$$\lambda_1 = 1$$
: $\mathbf{v}_1 = (-1, 1),$
 $\lambda_2 = -1$: $\mathbf{v}_2 = (-1, 3).$

5. We have

$$\mathbf{y} = \begin{bmatrix} c_1 e^t \\ c_2 e^{-t} \end{bmatrix}, \text{ so } \mathbf{x} = \begin{bmatrix} -1 & -1 \\ 1 & 3 \end{bmatrix} \mathbf{y} = \begin{bmatrix} -c_1 e^t - c_2 e^{-t} \\ c_1 e^t + 3c_2 e^{-t} \end{bmatrix}$$

Vector formulation

Equations: Nondefective Coefficient Matrix Math 240

Vector

Differential

Solving linear systems by diagonalization Real e-vals The change of basis matrix \boldsymbol{S} is

$$S = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix},$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are *n* linearly independent eigenvectors of *A*. Hence,

$$\mathbf{x} = S\mathbf{y} = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2 + \cdots + c_n e^{\lambda_n t} \mathbf{v}_n$$
$$= c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots + c_n \mathbf{x}_n.$$

Check if these n solutions are linearly independent:

$$W[\mathbf{x}_1, \dots, \mathbf{x}_n] = \det \left(\begin{bmatrix} e^{\lambda_1 t} \mathbf{v}_1 & e^{\lambda_2 t} \mathbf{v}_2 & \cdots & e^{\lambda_n t} \mathbf{v}_n \end{bmatrix} \right)$$
$$= e^{(\lambda_1 + \dots + \lambda_n)t} \det \left(\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \right)$$
$$\neq 0.$$

They are linearly independent, therefore a fundamental set of solutions.

General solution

Vector Differential Equations: Nondefective Coefficient Matrix Math 240

Solving linear systems by diagonalization Real e-vals

Theorem

Suppose A is an $n \times n$ matrix of real constants. If A has n real linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ (not necessarily distinct), then the vector functions $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ defined by

$$\mathbf{x}_k(t) = e^{\lambda_k t} \mathbf{v}_k, \quad \text{for } k = 1, 2, \dots, n$$

are a fundamental set of solutions to $\mathbf{x}' = A\mathbf{x}$ on any interval. The general solution is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n.$$

Solving linear systems by diagonalization

Real e-vals Complex e-vals

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$ if

$$A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 4 & -3 \\ -2 & 2 & -1 \end{bmatrix}$$

- 1. Characteristic polynomial is $-(\lambda + 1)(\lambda 2)^2$.
- 2. Eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 2$.
- 3. Eigenvectors are

$$\lambda_1 = -1:$$
 $\mathbf{v}_1 = (1, 1, 1),$
 $\lambda_2 = 2:$ $\mathbf{v}_2 = (1, 1, 0),$ $\mathbf{v}_3 = (-3, 0, 2).$

4. Fundamental set of solution is

$$\mathbf{x}_{1}(t) = e^{-t} \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \mathbf{x}_{2}(t) = e^{2t} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \ \mathbf{x}_{3}(t) = e^{2t} \begin{bmatrix} -3\\0\\2 \end{bmatrix}$$

5. So general solution is

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + c_3 \mathbf{x}_3(t).$

Complex eigenvalues

Vector Differential Equations: Nondefective Coefficient Matrix Math 240

Solving linear systems by diagonalization Real e-vals Complex e-vals

What happens when A has complex eigenvalues? If u = a + ib and v = a - ib then $a = \frac{u + v}{2}$ and $b = \frac{u - v}{2i}$. Theorem Let $\mathbf{u}(t)$ and $\mathbf{v}(t)$ be real-valued vector functions. If

 $\mathbf{w}_1(t) = \mathbf{u}(t) + i\mathbf{v}(t)$ and $\mathbf{w}_2(t) = \mathbf{u}(t) - i\mathbf{v}(t)$ are complex conjugate solutions to $\mathbf{x}' = A\mathbf{x}$, then

 $\mathbf{x}_1(t) = \mathbf{u}(t)$ and $\mathbf{x}_2(t) = \mathbf{v}(t)$

are themselves <u>real valued</u> solutions of $\mathbf{x}' = A\mathbf{x}$.

Solving linear systems by diagonalization Real e-vals Complex e-vals

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$ where

$$A = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$$

- 1. Characteristic polynomial is $\lambda^2 + 1$.
- 2. Eigenvalues are $\lambda = \pm i$.
- 3. Eigenvectors are $\mathbf{v} = (1, \pm i)$.
- 4. Linearly independent solutions are

$$\mathbf{w}(t) = e^{\pm it} \begin{bmatrix} 1\\ \pm i \end{bmatrix} = \begin{bmatrix} \cos t\\ -\sin t \end{bmatrix} \pm i \begin{bmatrix} \sin t\\ \cos t \end{bmatrix}$$

5. Yields the two linearly independent real solutions

$$\mathbf{x}_1(t) = \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$$
 and $\mathbf{x}_2(t) = \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$

Complex eigenvalue example

The formula

Vector Differential Equations: Nondefective Coefficient Matrix Math 240

Solving linear systems by diagonalization Real e-vals Complex e-vals Let's derive the explicit form of the real solutions produced by a pair of complex conjugate eigenvectors.

Suppose $\lambda = a + ib$ is an eigenvalue of A, with $b \neq 0$, corresponding to the eigenvector $\mathbf{r} + i\mathbf{s}$. This produces the complex solution

$$\begin{aligned} \mathbf{w}(t) &= e^{(a+ib)t}(\mathbf{r}+i\mathbf{s}) \\ &= e^{at}(\cos bt + i\sin bt)(\mathbf{r}+i\mathbf{s}) \\ &= e^{at}(\cos bt\,\mathbf{r}-\sin bt\,\mathbf{s}) + ie^{at}(\sin bt\,\mathbf{r}+\cos bt\,\mathbf{s}). \end{aligned}$$

Thus, the two real-valued solutions to $\mathbf{x}' = A\mathbf{x}$ are

$$\mathbf{x}_1(t) = e^{at}(\cos bt \,\mathbf{r} - \sin bt \,\mathbf{s}),$$
$$\mathbf{x}_2(t) = e^{at}(\sin bt \,\mathbf{r} + \cos bt \,\mathbf{s}).$$

Remark

The conjugate eigenvalue a - ib and eigenvector $\mathbf{r} - i\mathbf{s}$ would result in the same pair of real solutions.