Linear Transformations

Math 240

Linear Transformations

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition linear trans.
Kernel and

Linear Transformations

Math 240 — Calculus III

Summer 2013, Session II

Tuesday, July 23, 2013

Linear Trans-

Kernel and

The matrix of

1. Linear Transformations Linear transformations of Euclidean space

- 2. Kernel and Range
- 3. The matrix of a linear transformation Composition of linear transformations Kernel and Range

Linear Transformations

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of

Composition linear trans. Kernel and Range In the $m \times n$ linear system

$$A\mathbf{x} = \mathbf{0},$$

we can regard A as transforming elements of \mathbb{R}^n (as column vectors) into elements of \mathbb{R}^m via the rule

$$T(\mathbf{x}) = A\mathbf{x}.$$

Then solving the system amounts to finding all of the vectors $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) = \mathbf{0}$.

Solving the differential equation

$$y'' + y = 0$$

is equivalent to finding functions y such that T(y)=0, where T is defined as

$$T(y) = y'' + y.$$

Linear Transformations

Transformation of Euclidean space

Kernel and Range

The matrix of a linear trans. Composition of linear trans. Kernel and

Definition

Let V and W be vector spaces with the same scalars. A mapping $T:V\to W$ is called a **linear transformation** from V to W if it satisfies

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and
- $2. T(c\mathbf{v}) = cT(\mathbf{v})$

for all vectors $\mathbf{u}, \mathbf{v} \in V$ and all scalars c. V is called the **domain** and W the **codomain** of T.

Examples

- ▶ $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$, where A is an $m \times n$ matrix
- $\blacktriangleright \ T:C^k(I)\to C^{k-2}(I) \ \text{defined by} \ T(y)=y''+y$
- ▶ $T: M_{m \times n}(\mathbb{R}) \to M_{n \times m}(\mathbb{R})$ defined by $T(A) = A^T$
- ▶ $T: P_1 \rightarrow P_2$ defined by $T(a+bx) = (a+2b) + 3ax + 4bx^2$

Linear Transformations

Math 240

Linear Transformations

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of linear trans.

linear trans. Kernel and Range

Examples

- 1. Verify that $T: M_{m \times n}(\mathbb{R}) \to M_{n \times m}(\mathbb{R})$, where $T(A) = A^T$, is a linear transformation.
 - \blacktriangleright The transpose of an $m\times n$ matrix is an $n\times m$ matrix.
 - ▶ If $A, B \in M_{m \times n}(\mathbb{R})$, then

$$T(A+B) = (A+B)^T = A^T + B^T = T(A) + T(B).$$

▶ If $A \in M_{m \times n}(\mathbb{R})$ and $c \in \mathbb{R}$, then

$$T(cA) = (cA)^T = cA^T = cT(A).$$

- 2. Verify that $T: C^k(I) \to C^{k-2}(I)$, where T(y) = y'' + y, is a linear transformation.
 - ▶ If $y \in C^k(I)$ then $T(y) = y'' + y \in C^{k-2}(I)$.
 - ▶ If $y_1, y_2 \in C^k(I)$, then

$$T(y_1 + y_2) = (y_1 + y_2)'' + (y_1 + y_2) = y_1'' + y_2'' + y_1 + y_2$$

= $(y_1'' + y_1) + (y_2'' + y_2) = T(y_1) + T(y_2).$

If $y \in C^k(I)$ and $c \in \mathbb{R}$, then T(cy) = (cy)'' + (cy) = cy'' + cy = c(y'' + y) = cT(y).

Linear Transformations

Transformation of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition linear trans. Kernel and Range A consequence of the properties of a linear transformation is that they preserve linear combinations, in the sense that

$$T(c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n)=c_1T(\mathbf{v}_1)+\cdots+c_nT(\mathbf{v}_n).$$

In particular, if $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for the domain of T, then knowing $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ is enough to determine T everywhere.

Linear Trans

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of linear trans

Let A be an $m \times n$ matrix with real entries and define $T: \mathbb{R}^n \to \mathbb{R}^m$ by $T(\mathbf{x}) = A\mathbf{x}$. Verify that T is a linear transformation.

- ▶ If \mathbf{x} is an $n \times 1$ column vector then $A\mathbf{x}$ is an $m \times 1$ column vector.
- $T(\mathbf{x} + \mathbf{y}) = A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = T(\mathbf{x}) + T(\mathbf{y})$
- $T(c\mathbf{x}) = A(c\mathbf{x}) = cA\mathbf{x} = cT(\mathbf{x})$

Such a transformation is called a **matrix transformation**. In fact, *every* linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.

Linear Trans-

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of

Composition of linear trans. Kernel and Range

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is described by the matrix transformation $T(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

and e_1, e_2, \dots, e_n denote the standard basis vectors for \mathbb{R}^n . This A is called the **matrix of** T.

Example

Determine the matrix of the linear transformation $T:\mathbb{R}^4 \to \mathbb{R}^3$ defined by

$$T(x_1, x_2, x_3, x_4) = (2x_1 + 3x_2 + x_4, 5x_1 + 9x_3 - x_4, 4x_1 + 2x_2 - x_3 + 7x_4).$$

Linear Transformations Transformations of Euclidean

Kernel and Range

The matrix of a linear trans. Composition of linear trans. Kernel and Range

Definition

Suppose $T:V\to W$ is a linear transformation. The set consisting of all the vectors $\mathbf{v}\in V$ such that $T(\mathbf{v})=\mathbf{0}$ is called the **kernel** of T. It is denoted

$$Ker(T) = \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0} \}.$$

Example

Let $T: C^k(I) \to C^{k-2}(I)$ be the linear transformation T(y) = y'' + y. Its kernel is spanned by $\{\cos x, \sin x\}$.

Remarks

- ► The kernel of a linear transformation is a subspace of its domain.
- ► The kernel of a matrix transformation is simply the null space of the matrix.

formations
Transformations
of Euclidean

Kernel and Range

The matrix of a linear trans. Composition of linear trans. Kernel and Range

Definition

The **range** of the linear transformation $T:V\to W$ is the subset of W consisting of everything "hit by" T. In symbols,

$$\operatorname{Rng}(T) = \{ T(\mathbf{v}) \in W : \mathbf{v} \in V \}.$$

Example

Consider the linear transformation $T:M_n(\mathbb{R})\to M_n(\mathbb{R})$ defined by $T(A)=A+A^T$. The range of T is the subspace of symmetric $n\times n$ matrices.

Remarks

- ► The range of a linear transformation is a subspace of its codomain.
- ► The range of a matrix transformation is the column space of the matrix.

Linear Transformations Transformations of Euclidean

Kernel and Range

The matrix of a linear trans. Composition of linear trans. Kernel and Suppose T is the matrix transformation with $m \times n$ matrix A. We know Hence,

- $ightharpoonup \operatorname{Ker}(T) = \operatorname{nullspace}(A),$
- $ightharpoonup \dim (\operatorname{Ker}(T)) = \operatorname{nullity}(A),$
- $ightharpoonup \operatorname{Rng}(T) = \operatorname{colspace}(A),$
- $\qquad \dim\left(\operatorname{Rng}(T)\right) = \operatorname{rank}(A),$
- ▶ the domain of T is \mathbb{R}^n .
- $ightharpoonup \dim (\operatorname{domain} \operatorname{of} T) = n.$

We know from the rank-nullity theorem that

$$rank(A) + nullity(A) = n.$$

This fact is also true when T is not a matrix transformation:

Theorem

If $T:V\to W$ is a linear transformation and V is finite-dimensional, then

$$\dim\left(\mathrm{Ker}(T)\right)+\dim\left(\mathrm{Rng}(T)\right)=\dim(V).$$

Linear Trans

Transformations of Euclidean space

Kernel an Range

The matrix of a linear trans.

Composition of linear trans. Kernel and Range

Theorem

Let V be a vector space with basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. Then every vector $\mathbf{v} \in V$ can be written in a unique way as a linear combination

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n.$$

In other words, picking a basis for a vector space allows us to give coordinates for points. This will allow us to give matrices for linear transformations of vector spaces besides \mathbb{R}^n .

Linear Trans

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of linear trans. Kernel and Range

Definition

Let V and W be vector spaces with *ordered* bases $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$, respectively, and let $T: V \to W$ be a linear transformation. The matrix representation of T relative to the bases B and C is

$$A = [a_{ij}]$$

where

$$T\left(\mathbf{v}_{j}\right)=a_{1j}\mathbf{w}_{1}+a_{2j}\mathbf{w}_{2}+\cdots+a_{mj}\mathbf{w}_{m}.$$

In other words, A is the matrix whose j-th column is $T(\mathbf{v}_j)$, expressed in coordinates using $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$.

Linear Trans-

Let $T: P_1 \to P_2$ be the linear transformation defined by

$$T(a+bx) = (2a-3b) + (b-5a)x + (a+b)x^{2}.$$

Use bases $\{1, x\}$ for P_1 and $\{1, x, x^2\}$ for P_2 to give a matrix representation of T.

We have

$$T(1) = 2 - 5x + x^2$$
 and $T(x) = -3 + x + x^2$,

 $A_1 = \begin{bmatrix} 2 & -3 \\ -5 & 1 \\ 1 & 1 \end{bmatrix}.$

- SO

Now use the bases
$$\{\frac{1}{2},x_{-13}^{-15}\}$$
 for P_1 and $\{\frac{1}{6},1+\frac{25}{25},1+x^2\}$ for P_2 . $A_1=\begin{bmatrix} -5 & 1 \\ 1 & 1 \end{bmatrix}$ $A_2=\begin{bmatrix} -5 & -24 \\ 1 & 6 \end{bmatrix}$

Linear Transformations

Math 240

Linear Trans-

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of linear trans. Kernel and Range

Composition of linear transformations

Definition

Let $T_1:U\to V$ and $T_2:V\to W$ be linear transformations. Their **composition** is the linear transformation $T_2\circ T_1$ defined by

$$(T_2 \circ T_1)(\mathbf{u}) = T_2(T_1(\mathbf{u})).$$

Theorem

Let T_1 and T_2 be as above, and let B, C, and D be ordered bases for U, V, and W, respectively. If

- $lacktriangleq A_1$ is the matrix representation for T_1 relative to B and C,
- lacktriangledown A_2 is the matrix representation for T_2 relative to C and D,
- ▶ A_{21} is the matrix representation for $T_2 \circ T_1$ relative to B and D,

then $A_{21} = A_2 A_1$.

Linear Transformations

Transformation of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of linear trans

Definition

If $T:V\to W$ is a linear transformation, its **inverse** (if it exists) is a linear transformation $T^{-1}:W\to V$ such that

$$\left(T^{-1}\circ T\right)\left(\mathbf{v}\right)=\mathbf{v}$$
 and $\left(T\circ T^{-1}\right)\left(\mathbf{w}\right)=\mathbf{w}$

for all $\mathbf{v} \in V$ and $\mathbf{w} \in W$.

Theorem

Let T be as above and let A be the matrix representation of T relative to bases B and C for V and W, respectively. T has an inverse transformation if and only if A is invertible and, if so, T^{-1} is the linear transformation with matrix A^{-1} relative to C and B.

Kernel and

The matrix of

Composition of linear trans

Let $T: P_2 \to P_2$ be defined by

$$T(a + bx + cx^{2}) = (3a - b + c) + (a - c)x + (4b + c)x^{2}.$$

Using the basis $\{1, x, x^2\}$ for P_2 , the matrix representation for T is

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 4 & 1 \end{bmatrix}.$$

This matrix is invertible and

$$A^{-1} = \frac{1}{17} \begin{bmatrix} 4 & 5 & 1 \\ -1 & 3 & 4 \\ 4 & -12 & 1 \end{bmatrix}.$$

Thus, T^{-1} is given by

$$T^{-1}(a+bx+cx^2) = \frac{4a+5b+c}{17} + \frac{-a+3b+4c}{17}x + \frac{4a-12b+c}{17}x^2.$$

Linear Trans

Transformations of Euclidean space

Kernel and Range

The matrix of a linear trans.

Composition of

Kernel and Range

Theorem

Let $T:V\to W$ be a linear transformation and A be a matrix representation of T relative to some bases for V and W.

- $\operatorname{Ker}(T) = \{c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n \in V : (c_1, \dots, c_n) \in \operatorname{nullspace}(A)\},$
- $\operatorname{Rng}(T) = \{c_1 \mathbf{w}_1 + \dots + c_m \mathbf{w}_m \in W : (c_1, \dots, c_m) \in \operatorname{colspace}(A)\}.$

