

Linear Transformations

Math 240 - Calculus III

Summer 2013, Session II

Tuesday, July 23, 2013
2. Kernel and Range
3. The matrix of a linear transformation Composition of linear transformations Kernel and Range

Linear Transformations

Motivation

In the $m \times n$ linear system

$$
A \mathbf{x}=\mathbf{0}
$$

we can regard A as transforming elements of \mathbb{R}^{n} (as column vectors) into elements of \mathbb{R}^{m} via the rule

$$
T(\mathbf{x})=A \mathbf{x}
$$

Then solving the system amounts to finding all of the vectors $\mathrm{x} \in \mathbb{R}^{n}$ such that $T(\mathrm{x})=\mathbf{0}$.

Solving the differential equation

$$
y^{\prime \prime}+y=0
$$

is equivalent to finding functions y such that $T(y)=0$, where T is defined as

$$
T(y)=y^{\prime \prime}+y
$$

Definition

Let V and W be vector spaces with the same scalars. A mapping $T: V \rightarrow W$ is called a linear transformation from V to W if it satisfies

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ and
2. $T(c \mathbf{v})=c T(\mathbf{v})$
for all vectors $\mathbf{u}, \mathbf{v} \in V$ and all scalars c. V is called the domain and W the codomain of T.

Examples

- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(\mathbf{x})=A \mathbf{x}$, where A is an $m \times n$ matrix
- $T: C^{k}(I) \rightarrow C^{k-2}(I)$ defined by $T(y)=y^{\prime \prime}+y$
- $T: M_{m \times n}(\mathbb{R}) \rightarrow M_{n \times m}(\mathbb{R})$ defined by $T(A)=A^{T}$
- $T: P_{1} \rightarrow P_{2}$ defined by $T(a+b x)=(a+2 b)+3 a x+4 b x^{2}$

Linear Transformations

Math 240

Linear Transformations
Transformations of Euclidean space

Kernel and
Range
The matrix of a linear trans.

Examples

1. Verify that $T: M_{m \times n}(\mathbb{R}) \rightarrow M_{n \times m}(\mathbb{R})$, where $T(A)=A^{T}$, is a linear transformation.

- The transpose of an $m \times n$ matrix is an $n \times m$ matrix.
- If $A, B \in M_{m \times n}(\mathbb{R})$, then

$$
T(A+B)=(A+B)^{T}=A^{T}+B^{T}=T(A)+T(B) .
$$

- If $A \in M_{m \times n}(\mathbb{R})$ and $c \in \mathbb{R}$, then

$$
T(c A)=(c A)^{T}=c A^{T}=c T(A) .
$$

2. Verify that $T: C^{k}(I) \rightarrow C^{k-2}(I)$, where $T(y)=y^{\prime \prime}+y$, is a linear transformation.

- If $y \in C^{k}(I)$ then $T(y)=y^{\prime \prime}+y \in C^{k-2}(I)$.
- If $y_{1}, y_{2} \in C^{k}(I)$, then

$$
\begin{aligned}
T\left(y_{1}+y_{2}\right) & =\left(y_{1}+y_{2}\right)^{\prime \prime}+\left(y_{1}+y_{2}\right)=y_{1}^{\prime \prime}+y_{2}^{\prime \prime}+y_{1}+y_{2} \\
& =\left(y_{1}^{\prime \prime}+y_{1}\right)+\left(y_{2}^{\prime \prime}+y_{2}\right)=T\left(y_{1}\right)+T\left(y_{2}\right)
\end{aligned}
$$

- If $y \in C^{k}(I)$ and $c \in \mathbb{R}$, then

$$
T(c y)=(c y)^{\prime \prime}+(c y)=c y^{\prime \prime}+c y=c\left(y^{\prime \prime}+y\right)=c T(y)
$$

Linear Transformations Math 240

Specifying linear transformations

A consequence of the properties of a linear transformation is that they preserve linear combinations, in the sense that

$$
T\left(c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{n} T\left(\mathbf{v}_{n}\right)
$$

In particular, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for the domain of T, then knowing $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is enough to determine T everywhere.

Linear Transformations

Linear transformations from \mathbb{R}^{n} to \mathbb{R}^{m}

Let A be an $m \times n$ matrix with real entries and define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $T(\mathbf{x})=A \mathbf{x}$. Verify that T is a linear transformation.

- If \mathbf{x} is an $n \times 1$ column vector then $A \mathbf{x}$ is an $m \times 1$ column vector.
- $T(\mathbf{x}+\mathbf{y})=A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=T(\mathbf{x})+T(\mathbf{y})$
- $T(c \mathbf{x})=A(c \mathbf{x})=c A \mathbf{x}=c T(\mathbf{x})$

Such a transformation is called a matrix transformation. In fact, every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.

Linear Trans-

 formations
Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is
described by the matrix transformation $T(\mathbf{x})=A \mathbf{x}$, where
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is
described by the matrix transformation $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

and $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ denote the standard basis vectors for \mathbb{R}^{n}. This A is called the matrix of T.

Example

Determine the matrix of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ defined by

$$
\begin{aligned}
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1}+3 x_{2}+x_{4},\right. & 5 x_{1}+9 x_{3}-x_{4} \\
4 & \left.x_{1}+2 x_{2}-x_{3}+7 x_{4}\right)
\end{aligned}
$$

Definition

Suppose $T: V \rightarrow W$ is a linear transformation. The set consisting of all the vectors $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{0}$ is called the kernel of T. It is denoted

$$
\operatorname{Ker}(T)=\{\mathbf{v} \in V: T(\mathbf{v})=\mathbf{0}\}
$$

Example

Let $T: C^{k}(I) \rightarrow C^{k-2}(I)$ be the linear transformation $T(y)=y^{\prime \prime}+y$. Its kernel is spanned by $\{\cos x, \sin x\}$.

Remarks

- The kernel of a linear transformation is a subspace of its domain.
- The kernel of a matrix transformation is simply the null space of the matrix.

Definition

The range of the linear transformation $T: V \rightarrow W$ is the subset of W consisting of everything "hit by" T. In symbols,

$$
\operatorname{Rng}(T)=\{T(\mathbf{v}) \in W: \mathbf{v} \in V\}
$$

Example

Consider the linear transformation $T: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ defined by $T(A)=A+A^{T}$. The range of T is the subspace of symmetric $n \times n$ matrices.

Remarks

- The range of a linear transformation is a subspace of its codomain.
- The range of a matrix transformation is the column space of the matrix.

Linear Transformations

Suppose T is the matrix transformation with $m \times n$ matrix A. We know

- $\operatorname{Ker}(T)=$ nullspace (A),
- $\operatorname{Rng}(T)=\operatorname{colspace}(A)$,
- the domain of T is \mathbb{R}^{n}. Hence,
- $\operatorname{dim}(\operatorname{Ker}(T))=\operatorname{nullity}(A)$,
- $\operatorname{dim}(\operatorname{Rng}(T))=\operatorname{rank}(A)$,
- $\operatorname{dim}($ domain of $T)=n$.

We know from the rank-nullity theorem that

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

This fact is also true when T is not a matrix transformation:
Theorem
If $T: V \rightarrow W$ is a linear transformation and V is finite-dimensional, then

$$
\operatorname{dim}(\operatorname{Ker}(T))+\operatorname{dim}(\operatorname{Rng}(T))=\operatorname{dim}(V)
$$

The function of bases

The matrix of a linear trans.

Theorem
Let V be a vector space with basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. Then every vector $\mathbf{v} \in V$ can be written in a unique way as a linear combination

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n} .
$$

In other words, picking a basis for a vector space allows us to give coordinates for points. This will allow us to give matrices for linear transformations of vector spaces besides \mathbb{R}^{n}.

The matrix of a linear transformation

Definition

Let V and W be vector spaces with ordered bases
$B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $C=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$,
respectively, and let $T: V \rightarrow W$ be a linear transformation.
The matrix representation of T relative to the bases B and C is

$$
A=\left[a_{i j}\right]
$$

where

$$
T\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+a_{2 j} \mathbf{w}_{2}+\cdots+a_{m j} \mathbf{w}_{m}
$$

In other words, A is the matrix whose j-th column is $T\left(\mathbf{v}_{j}\right)$, expressed in coordinates using $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$.

Linear Transformations

Math 240

$$
T(1)=2-5 x+x^{2} \quad \text { and } \quad T(x)=-3+x+x^{2},
$$

so

$$
A_{1}=\left[\begin{array}{rr}
2 & -3 \\
-5 & 1 \\
1 & 1
\end{array}\right]
$$

Now use the basep $\left\{\begin{array}{l}1 \\ 2\end{array}, x_{-}+\frac{p}{p}\right\}$ for P_{1} and $\left\{6,1+2,7,1+x^{2}\right\}$ for P_{2}.

We have

$$
A_{1}=\left[\begin{array}{rr}
-5 & 1 \\
1 & 1
\end{array}\right]
$$

Example

Let $T: P_{1} \rightarrow P_{2}$ be the linear transformation defined by

$$
T(a+b x)=(2 a-3 b)+(b-5 a) x+(a+b) x^{2}
$$

Use bases $\{1, x\}$ for P_{1} and $\left\{1, x, x^{2}\right\}$ for P_{2} to give a matrix representation of T.

We have

$$
A_{2}=\left[\begin{array}{rr}
-5 & -24 \\
1 & 6
\end{array}\right]
$$

Composition of linear transformations

then $A_{21}=A_{2} A_{1}$.

Definition

Let $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ be linear transformations.
Their composition is the linear transformation $T_{2} \circ T_{1}$ defined by

$$
\left(T_{2} \circ T_{1}\right)(\mathbf{u})=T_{2}\left(T_{1}(\mathbf{u})\right)
$$

Theorem
Let T_{1} and T_{2} be as above, and let B, C, and D be ordered bases for U, V, and W, respectively. If

- A_{1} is the matrix representation for T_{1} relative to B and C,
- A_{2} is the matrix representation for T_{2} relative to C and D,
- A_{21} is the matrix representation for $T_{2} \circ T_{1}$ relative to B and D,

Linear Transformations

Definition

If $T: V \rightarrow W$ is a linear transformation, its inverse (if it exists) is a linear transformation $T^{-1}: W \rightarrow V$ such that

$$
\left(T^{-1} \circ T\right)(\mathbf{v})=\mathbf{v} \quad \text { and } \quad\left(T \circ T^{-1}\right)(\mathbf{w})=\mathbf{w}
$$

for all $\mathbf{v} \in V$ and $\mathbf{w} \in W$.
Theorem
Let T be as above and let A be the matrix representation of T relative to bases B and C for V and W, respectively. T has an inverse transformation if and only if A is invertible and, if so, T^{-1} is the linear transformation with matrix A^{-1} relative to C and B.

Linear Transformations

Math 240
Let $T: P_{2} \rightarrow P_{2}$ be defined by

$$
T\left(a+b x+c x^{2}\right)=(3 a-b+c)+(a-c) x+(4 b+c) x^{2} .
$$

Using the basis $\left\{1, x, x^{2}\right\}$ for P_{2}, the matrix representation for T is

$$
A=\left[\begin{array}{rrr}
3 & -1 & 1 \\
1 & 0 & -1 \\
0 & 4 & 1
\end{array}\right]
$$

This matrix is invertible and

$$
A^{-1}=\frac{1}{17}\left[\begin{array}{rrr}
4 & 5 & 1 \\
-1 & 3 & 4 \\
4 & -12 & 1
\end{array}\right]
$$

Thus, T^{-1} is given by

Linear Transformations

Kernel and Range

Linear Trans-

 formationsspace
Kernel and Range

The matrix of a linear trans.

Theorem
Let $T: V \rightarrow W$ be a linear transformation and A be a matrix representation of T relative to some bases for V and W.

- $\operatorname{Ker}(T)=\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n} \in V:\left(c_{1}, \ldots, c_{n}\right) \in\right.$ nullspace $(A)\}$,
- $\operatorname{Rng}(T)=\left\{c_{1} \mathbf{w}_{1}+\cdots+c_{m} \mathbf{w}_{m} \in W:\left(c_{1}, \ldots, c_{m}\right) \in\right.$ colspace $(A)\}$.

