Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems

Row Space, Column Space, and the Rank-Nullity Theorem

Math 240 — Calculus III

Summer 2013, Session II

Monday, July 22, 2013

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems

1. Row Space and Column Space

2. The Rank-Nullity Theorem Homogeneous linear systems Nonhomogeneous linear systems

Motivation

Row Space, Col Space, and Rank-Nullity

Math 240

Row Space and Column Space

The Rank-Nullity Theorem Homogeneous linear systems Nonhomogeneou linear systems Say S is a subspace of \mathbb{R}^n with basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. What operations can we perform on the basis while preserving its span and linear independence?

Swap two elements (or shuffle them in any way)

$$\mathsf{E.g.} \ \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \rightarrow \{\mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_3\}$$

Multiply one element by a nonzero scalar

 $\mathsf{E}.\mathsf{g}.~\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} \rightarrow \{\mathbf{v}_1,5\mathbf{v}_2,\mathbf{v}_3\}$

Add a scalar multiple of one element to another

$$\mathsf{E}.\mathsf{g}.~\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} \rightarrow \{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3+2\mathbf{v}_2\}$$

If we make the $\mathbf{v}_1, \ldots, \mathbf{v}_n$ the rows of a matrix, these operations are just the familiar elementary row ops.

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneou linear systems

If A is an $m \times n$ matrix with real entries, the **row space** of A is the subspace of \mathbb{R}^n spanned by its rows.

Row space

Remarks

- 1. Elementary row ops do not change the row space.
- 2. In general, the rows of a matrix may not be linearly independent.

Theorem

The nonzero rows of any row-echelon form of A is a basis for its row space.

Example

Row Space, Col Space, and Rank-Nullity

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems Determine a basis for the row space of

$$A = \begin{bmatrix} 1 & -1 & 1 & 3 & 2 \\ 2 & -1 & 1 & 5 & 1 \\ 3 & -1 & 1 & 7 & 0 \\ 0 & 1 & -1 & -1 & -3 \end{bmatrix}.$$

Reduce A to the row-echelon form

Therefore, the row space of A is the 2-dimensional subspace of \mathbb{R}^5 with basis

$$\{(1,-1,1,3,2), (0,1,-1,-1,-3)\}.$$

Math 240

Row Space and Column Space

The Rank-Nullity Theorem Homogeneous

linear systems Nonhomogeneous linear systems We can do the same thing for columns.

Definition

If A is an $m\times n$ matrix with real entries, the column space of A is the subspace of \mathbb{R}^m spanned by its columns.

Column space

Obviously, the column space of A equals the row space of A^T , so a basis can be computed by reducing A^T to row-echelon form. However, this is not the best way.

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems

Determine a basis for the column space of

$$A = \begin{bmatrix} 1 & 2 & -1 & -2 & 0 \\ 2 & 4 & -1 & 1 & 0 \\ 3 & 6 & -1 & 4 & 1 \\ 0 & 0 & 1 & 5 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix}.$$

Reduce A to the reduced row-echelon form

$$E = \begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 & \mathbf{e}_5 \end{bmatrix}.$$
$$\mathbf{e}_2 = 2\mathbf{e}_1 \Rightarrow \mathbf{a}_2 = 2\mathbf{a}_1$$
$$\mathbf{e}_4 = 3\mathbf{e}_1 + 5\mathbf{e}_3 \Rightarrow \mathbf{a}_4 = 3\mathbf{a}_1 + 5\mathbf{a}_3$$

Therefore, $\{a_1, a_3, a_5\}$ is a basis for the column space of A.

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems We don't need to go all the way to RREF; we can see where the leading ones will be just from REF.

Column space

Theorem

If A is an $m \times n$ matrix with real entries, the set of column vectors of A corresponding to those columns containing leading ones in any row-echelon form of A is a basis for the column space of A.

Another point of view

The column space of an $m \times n$ matrix A is the subspace of \mathbb{R}^m consisting of the vectors $\mathbf{v} \in \mathbb{R}^m$ such that the linear system $A\mathbf{x} = \mathbf{v}$ is consistent.

Relation to rank

Row Space, Col Space, and Rank-Nullity

Math 240

Row Space and Column Space

The Rank-Nullity Theorem Homogeneous

Nonhomogeneous linear systems If A is an $m \times n$ matrix, to determine bases for the row space and column space of A, we reduce A to a row-echelon form E.

- 1. The rows of E containing leading ones form a basis for the row space.
- 2. The columns of A corresponding to columns of E with leading ones form a basis for the column space.

 $\dim\left(\mathrm{rowspace}(A)\right)=\mathrm{rank}(A)=\dim\left(\mathrm{colspace}(A)\right)$

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems

$$A\mathbf{x} = \mathbf{v},$$

Segue

 $\operatorname{rank}(A)$, functioning as $\dim(\operatorname{colspace}(A))$, represents the degrees of freedom in **v** while keeping the system consistent.

The degrees of freedom in x while keeping v constant is the number of free variables in the system. We know this to be $n - \operatorname{rank}(A)$, since $\operatorname{rank}(A)$ is the number of bound variables.

Freedom in choosing x comes from the null space of A, since if $A\mathbf{x} = \mathbf{v}$ and $A\mathbf{y} = \mathbf{0}$ then

$$A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{v} + \mathbf{0} = \mathbf{v}.$$

Hence, the degrees of freedom in \mathbf{x} should be equal to $\dim(\operatorname{nullspace}(A))$.

The Rank-Nullity Theorem

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems

Definition

When A is an $m \times n$ matrix, recall that the null space of A is

nullspace
$$(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

Its dimension is referred to as the **nullity** of A.

Theorem (Rank-Nullity Theorem) For any $m \times n$ matrix A,

 $\operatorname{rank}(A) + \operatorname{nullity}(A) = n.$

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneous linear systems

We're now going to examine the geometry of the solution set of a linear system. Consider the linear system

 $A\mathbf{x} = \mathbf{b},$

where A is $m \times n$.

If b = 0, the system is called **homogeneous**. In this case, the solution set is simply the null space of A.

Any homogeneous system has the solution $\mathbf{x} = \mathbf{0}$, which is called the **trivial solution**. Geometrically, this means that the solution set passes through the origin. Furthermore, we have shown that the solution set of a homogeneous system is in fact a subspace of \mathbb{R}^n .

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems Nonhomogeneo linear systems Structure of a homogeneous solution set

Theorem

- If rank(A) = n, then Ax = 0 has only the trivial solution x = 0, so nullspace(A) = {0}.
- If rank(A) = r < n, then Ax = 0 has an infinite number of solutions, all of which are of the form

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_{n-r} \mathbf{x}_{n-r},$$

where $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-r}\}$ is a basis for $\operatorname{nullspace}(A)$.

Remark

Such an expression is called the **general solution** to the homogeneous linear system.

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems

Nonhomogeneous linear systems Now consider a nonhomogeneous linear system

 $A\mathbf{x} = \mathbf{b}$

where A be an $m \times n$ matrix and b is not necessarily 0.

Theorem

- ▶ If **b** is not in colspace(A), then the system is inconsistent.
- If $\mathbf{b} \in \operatorname{colspace}(A)$, then the system is consistent and has
 - a unique solution if and only if rank(A) = n.
 - ▶ an infinite number of solutions if and only if rank(A) < n.

Geometrically, a nonhomogeneous solution set is just the corresponding homogeneous solution set that has been shifted away from the origin.

Math 240

Row Space and Column Space

The Rank-Nullity Theorem

Homogeneous linear systems

Nonhomogeneous linear systems

Structure of a nonhomogeneous solution set

Theorem

In the case where $\operatorname{rank}(A) = r < n$ and $\mathbf{b} \in \operatorname{colspace}(A)$, then all solutions are of the form

$$\mathbf{x} = \underbrace{c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_{n-r} \mathbf{x}_{n-r}}_{\mathbf{x}_c} + \mathbf{x}_p,$$

where \mathbf{x}_p is any particular solution to $A\mathbf{x} = \mathbf{b}$ and $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-r}\}$ is a basis for $\operatorname{nullspace}(A)$.

Remark

The above expression is the **general solution** to a nonhomogeneous linear system. It has two components:

- the complementary solution, \mathbf{x}_c , and
- the particular solution, \mathbf{x}_p .

