Row Space,
Col Space, and
Rank-Nullity
Math 240

Row Space

 and Column SpaceThe Rank-Nullity

Theorem

Row Space, Column Space, and the Rank-Nullity Theorem

Math 240 - Calculus III

Summer 2013, Session II

Monday, July 22, 2013

1. Row Space and Column Space
2. The Rank-Nullity Theorem

Homogeneous linear systems
Nonhomogeneous linear systems

Say S is a subspace of \mathbb{R}^{n} with basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. What operations can we perform on the basis while preserving its span and linear independence?

- Swap two elements (or shuffle them in any way)

$$
\text { E.g. }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \rightarrow\left\{\mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{3}\right\}
$$

- Multiply one element by a nonzero scalar

$$
\text { E.g. }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \rightarrow\left\{\mathbf{v}_{1}, 5 \mathbf{v}_{2}, \mathbf{v}_{3}\right\}
$$

- Add a scalar multiple of one element to another

$$
\text { E.g. }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \rightarrow\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}+2 \mathbf{v}_{2}\right\}
$$

If we make the $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ the rows of a matrix, these operations are just the familiar elementary row ops. Col Space, and

Definition

If A is an $m \times n$ matrix with real entries, the row space of A is the subspace of \mathbb{R}^{n} spanned by its rows.

Remarks

1. Elementary row ops do not change the row space.
2. In general, the rows of a matrix may not be linearly independent.

Theorem

The nonzero rows of any row-echelon form of A is a basis for its row space.

Row Space,

 Col Space, and
Example

Rank-Nullity

Math 240
Row Space and Column Space

The
Determine a basis for the row space of

Reduce A to the row-echelon form

$$
\left[\begin{array}{rrrrr}
1 & -1 & 1 & 3 & 2 \\
0 & 1 & -1 & -1 & -3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, the row space of A is the 2 -dimensional subspace of \mathbb{R}^{5} with basis

We can do the same thing for columns.

Definition

If A is an $m \times n$ matrix with real entries, the column space of A is the subspace of \mathbb{R}^{m} spanned by its columns.

Obviously, the column space of A equals the row space of A^{T}, so a basis can be computed by reducing A^{T} to row-echelon form. However, this is not the best way.

Column space

Math 240

Row Space and Column Space

The

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & -1 & -2 & 0 \\
2 & 4 & -1 & 1 & 0 \\
3 & 6 & -1 & 4 & 1 \\
0 & 0 & 1 & 5 & 0
\end{array}\right]=\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right]
$$

Reduce A to the reduced row-echelon form

$$
\begin{aligned}
E=\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] & =\left[\begin{array}{lllll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} & \mathbf{e}_{5}
\end{array}\right] \\
\mathbf{e}_{2}=2 \mathbf{e}_{1} & \Rightarrow \mathbf{a}_{2}=2 \mathbf{a}_{1} \\
\mathbf{e}_{4}=3 \mathbf{e}_{1}+5 \mathbf{e}_{3} & \Rightarrow \mathbf{a}_{4}=3 \mathbf{a}_{1}+5 \mathbf{a}_{3}
\end{aligned}
$$

Therefore, $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{5}\right\}$ is a basis for the column space of A. Col Space, and

We don't need to go all the way to RREF; we can see where the leading ones will be just from REF.
Theorem
If A is an $m \times n$ matrix with real entries, the set of column vectors of A corresponding to those columns containing leading ones in any row-echelon form of A is a basis for the column space of A.

Another point of view

The column space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{m} consisting of the vectors $\mathbf{v} \in \mathbb{R}^{m}$ such that the linear system $A \mathbf{x}=\mathbf{v}$ is consistent. and

If A is an $m \times n$ matrix, to determine bases for the row space and column space of A, we reduce A to a row-echelon form E.

1. The rows of E containing leading ones form a basis for the row space.
2. The columns of A corresponding to columns of E with leading ones form a basis for the column space.

$$
\operatorname{dim}(\operatorname{rowspace}(A))=\operatorname{rank}(A)=\operatorname{dim}(\operatorname{colspace}(A))
$$

Relation to rank

If A is an $m \times n$ matrix, we noted that in the linear system

$$
A \mathbf{x}=\mathbf{v}
$$

$\operatorname{rank}(A)$, functioning as $\operatorname{dim}(\operatorname{colspace}(A))$, represents the degrees of freedom in \mathbf{v} while keeping the system consistent.

The degrees of freedom in \mathbf{x} while keeping \mathbf{v} constant is the number of free variables in the system. We know this to be $n-\operatorname{rank}(A)$, since $\operatorname{rank}(A)$ is the number of bound variables.

Freedom in choosing x comes from the null space of A, since if $A \mathbf{x}=\mathbf{v}$ and $A \mathbf{y}=\mathbf{0}$ then

$$
A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{v}+\mathbf{0}=\mathbf{v}
$$

Hence, the degrees of freedom in x should be equal to dim (nullspace (A)).

Definition

When A is an $m \times n$ matrix, recall that the null space of A is

$$
\operatorname{nullspace}(A)=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

Its dimension is referred to as the nullity of A.
Theorem (Rank-Nullity Theorem)
For any $m \times n$ matrix A,

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

where A is $m \times n$.
If $\mathbf{b}=\mathbf{0}$, the system is called homogeneous. In this case, the solution set is simply the null space of A.

Any homogeneous system has the solution $\mathbf{x}=\mathbf{0}$, which is called the trivial solution. Geometrically, this means that the solution set passes through the origin. Furthermore, we have shown that the solution set of a homogeneous system is in fact a subspace of \mathbb{R}^{n}.
We're now going to examine the geometry of the solution set of a linear system. Consider the linear system

$$
A \mathbf{x}=\mathbf{b}
$$

Theorem

- If $\operatorname{rank}(A)=n$, then $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$, so nullspace $(A)=\{\mathbf{0}\}$.
- If $\operatorname{rank}(A)=r<n$, then $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions, all of which are of the form

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n-r} \mathbf{x}_{n-r}
$$

where $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n-r}\right\}$ is a basis for nullspace (A).

Remark
 Such

Such an expression is called the general solution to the homogeneous linear system.

Structure of a homogeneous solution set

Now consider a nonhomogeneous linear system

$$
A \mathbf{x}=\mathbf{b}
$$

where A be an $m \times n$ matrix and \mathbf{b} is not necessarily $\mathbf{0}$.

Theorem

- If \mathbf{b} is not in colspace (A), then the system is inconsistent.
- If $\mathbf{b} \in \operatorname{colspace}(A)$, then the system is consistent and has
- a unique solution if and only if $\operatorname{rank}(A)=n$.
- an infinite number of solutions if and only if $\operatorname{rank}(A)<n$.

Geometrically, a nonhomogeneous solution set is just the corresponding homogeneous solution set that has been shifted away from the origin.

- the particular solution, \mathbf{x}_{p}.

