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Recap of span

Yesterday, we saw how to construct a subspace of a vector
space as the span of a collection of vectors.

Question
What’s the span of v1 = (1, 1) and v2 = (2,−1) in R2?

Answer: R2.

Today we ask, when is this subspace equal to the whole vector
space?
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Definition

Definition
Let V be a vector space and v1, . . . ,vn ∈ V . The set
{v1, . . . ,vn} is a spanning set for V if

span{v1, . . . ,vn} = V.

We also say that V is generated or spanned by v1, . . . ,vn.

Theorem
Let v1, . . . ,vn be vectors in Rn. Then {v1, . . . ,vn} spans Rn

if and only if, for the matrix A =
[
v1 v2 · · · vn

]
, the

linear system Ax = v is consistent for every v ∈ Rn.
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Example

Determine whether the vectors v1 = (1,−1, 4),
v2 = (−2, 1, 3), and v3 = (4,−3, 5) span R3.

Our aim is to solve the linear system Ax = v, where

A =

 1 −2 4
−1 1 −3
4 3 5

 and x =

c1c2
c3

 ,

for an arbitrary v ∈ R3. If v = (x, y, z), reduce the augmented
matrix to 1 −2 4 x

0 1 −1 −x− y
0 0 0 7x+ 11y + z

 .

This has a solution only when 7x+ 11y + z = 0. Thus, the
span of these three vectors is a plane; they do not span R3.
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Linear dependence

Observe that {(1, 0), (0, 1)} and {(1, 0), (0, 1), (1, 2)} are both
spanning sets for R2. The latter has an “extra” vector: (1, 2)
which is unnecessary to span R2. This can be seen from the
relation

(1, 2) = 1(1, 0) + 2(0, 1).

Theorem
Let {v1,v2, . . . ,vn} be a set of at least two vectors in a vector
space V . If one of the vectors in the set is a linear combination
of the others, then that vector can be deleted from the set
without diminishing its span.

The condition of one vector being a linear combinations of the
others is called linear dependence.
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Definition

Definition
A set of vectors {v1, . . . ,vn} is said to be linearly dependent
if there are scalars c1, . . . , cn, not all zero, such that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Such a linear combination is called a linear dependence
relation or a linear dependency. The set of vectors is linearly
independent if the only linear combination producing 0 is the
trivial one with c1 = · · · = cn = 0.

Example

Consider a set consisting of a single vector v.

I If v = 0 then {v} is linearly dependent because, for
example, 1v = 0.

I If v 6= 0 then the only scalar c such that cv = 0 is c = 0.
Hence, {v} is linearly independent.
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The zero vector and linear dependence

Theorem
A set consisting of a single vector v is linearly dependent if and
only if v = 0. Therefore, any set consisting of a single nonzero
vector is linearly independent.

In fact, including 0 in any set of vectors will produce the linear
dependency

0+ 0v1 + 0v2 + · · ·+ 0vn = 0.

Theorem
Any set of vectors that includes the zero vector is linearly
dependent.
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Practice

1. Find a linear dependency among the vectors

f1(x) = 1, f2(x) = 2 sin2 x, f3(x) = −5 cos2 x

in the vector space C0(R).
2. If v1 = (1, 2,−1), v2 = (2,−1, 1), and v3 = (8, 1, 1),

show that {v1,v2,v3} is linearly dependent in R3 by
exhibiting a linear dependency.

Proposition

Any set of vectors that are not all zero contains a linearly
independent subset with the same span.

Proof.
Remove 0 and any vectors that are linear combinations of the
others. Q.E .D.
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Criteria for linear dependence

Theorem
Let v1,v2, . . . ,vk be vectors in Rn and A =

[
v1 · · · vk

]
.

Then {v1,v2, . . . ,vk} is linearly dependent if and only if the
linear system Ax = 0 has a nontrivial solution.

Corollary

1. If k > n, then {v1,v2, . . . ,vk} is linearly dependent.

2. If k = n, then {v1,v2, . . . ,vk} is linearly dependent if and
only if det(A) = 0.
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Linear independence of functions

Definition
A set of functions {f1, f2, . . . , fn} is linearly independent on
an interval I if the only values of the scalars c1, c2, . . . , cn
such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0 for all x ∈ I

are c1 = c2 = · · · = cn = 0.

Definition
Let f1, f2, . . . , fn ∈ Cn−1(I). The Wronskian of these
functions is

W [f1, . . . , fn](x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣ .
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Linear independence of functions

Theorem
Let f1, f2, . . . , fn ∈ Cn−1(I). If W [f1, f2, . . . , fn] is nonzero at
some point in I then {f1, . . . , fn} is linearly independent on I.

Remarks

1. In order for {f1, . . . , fn} to be linearly independent on I,
it is enough for W [f1, . . . , fn] to be nonzero at a single
point.

2. The theorem does not say that the set is linearly
dependent if W [f1, . . . , fn](x) = 0 for all x ∈ I.

3. The Wronskian will be more useful in the case where
f1, . . . , fn are the solutions to a differential equation, in
which case it will completely determine their linear
dependence or independence.
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Minimal spanning sets

Since we can remove vectors from a linearly dependent set
without changing the span, a “minimal spanning set” should be
linearly independent.

Definition
A set of vectors {v1,v2, . . . ,vn} in a vector space V is called a
basis (plural bases) for V if

1. The vectors are linearly independent.

2. They span V .

Examples

1. The standard basis for Rn is

e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), . . .

2. Any linearly independent set is a basis for its span.
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Practice

1. Find a basis for M2(R).
2. Find a basis for P2.

In general, the standard basis for Pn is

{1, x, x2, . . . , xn}.
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Dimension

R3 has a basis with 3 vectors. Could any basis have more?
Suppose v1,v2, . . . ,vn is another basis for R3 and n > 3.
Express each vj as

vi = (v1j , v2j , v3j) = v1je1 + v2je2 + v3je3.

If
A =

[
v1 v2 · · · vn

]
= [vij ]

then the system Ax = 0 has a nontrivial solution because
rank(A) ≤ 3. Such a nontrivial solution is a linear dependency
among v1,v2, . . . ,vn, so in fact they do not form a basis.

Theorem
If a vector space has a basis consisting of m vectors, then any
set of more than m vectors is linearly dependent.
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Dimension

Corollary

Any two bases for a single vector space have the same number
of elements.

Definition
The number of elements in any basis is the dimension of the
vector space. We denote it dimV .

Examples

1. dimRn = n

2. dimMm×n(R) = mn

3. dimPn = n+ 1

4. dimP =∞
5. dimCk(I) =∞
6. dim{0} = 0

A vector space is called finite dimensional if it has a basis with
a finite number of elements, or infinite dimensional otherwise.
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Dimension

Theorem
If dimV = n, then any set of n linearly independent vectors in
V is a basis.

Theorem
If dimV = n, then any set of n vectors that spans V is a basis.

Corollary

If S is a subspace of a vector space V then

dimS ≤ dimV

and S = V only if dimS = dimV .
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