Span, Linear Independence, Dimension
Math 240
Spanning sets
Linear
independence
Bases and Dimension

Span, Linear Independence, and Dimension

Math 240 - Calculus III

Summer 2013, Session II
Thursday, July 18, 2013

1. Spanning sets
2. Linear independence

3. Bases and Dimension

Yesterday, we saw how to construct a subspace of a vector space as the span of a collection of vectors.

Question

What's the span of $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(2,-1)$ in \mathbb{R}^{2} ?
Answer: \mathbb{R}^{2}.
Today we ask, when is this subspace equal to the whole vector space?

Recap of span

Definition
Let V be a vector space and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for V if

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}=V
$$

We also say that V is generated or spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
Theorem
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in \mathbb{R}^{n}. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ spans \mathbb{R}^{n} if and only if, for the matrix $A=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$, the linear system $A \mathbf{x}=\mathbf{v}$ is consistent for every $\mathbf{v} \in \mathbb{R}^{n}$.

Example

$$
A=\left[\begin{array}{rrr}
1 & -2 & 4 \\
-1 & 1 & -3 \\
4 & 3 & 5
\end{array}\right] \quad \text { and } \mathbf{x}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right],
$$

for an arbitrary $\mathbf{v} \in \mathbb{R}^{3}$. If $\mathbf{v}=(x, y, z)$, reduce the augmented matrix to

$$
\left[\begin{array}{cccc}
1 & -2 & 4 & x \\
0 & 1 & -1 & -x-y \\
0 & 0 & 0 & 7 x+11 y+z
\end{array}\right]
$$

This has a solution only when $7 x+11 y+z=0$. Thus, the span of these three vectors is a plane; they do not span \mathbb{R}^{3}.

Observe that $\{(1,0),(0,1)\}$ and $\{(1,0),(0,1),(1,2)\}$ are both spanning sets for \mathbb{R}^{2}. The latter has an "extra" vector: $(1,2)$ which is unnecessary to span \mathbb{R}^{2}. This can be seen from the relation

$$
(1,2)=1(1,0)+2(0,1)
$$

Theorem

Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a set of at least two vectors in a vector space V. If one of the vectors in the set is a linear combination of the others, then that vector can be deleted from the set without diminishing its span.
The condition of one vector being a linear combinations of the others is called linear dependence.

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is said to be linearly dependent if there are scalars c_{1}, \ldots, c_{n}, not all zero, such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

Such a linear combination is called a linear dependence relation or a linear dependency. The set of vectors is linearly independent if the only linear combination producing $\mathbf{0}$ is the trivial one with $c_{1}=\cdots=c_{n}=0$.

Example

Consider a set consisting of a single vector \mathbf{v}.

- If $\mathbf{v}=\mathbf{0}$ then $\{\mathbf{v}\}$ is linearly dependent because, for example, $\mathbf{1 v}=\mathbf{0}$.
- If $\mathbf{v} \neq \mathbf{0}$ then the only scalar c such that $c \mathbf{v}=\mathbf{0}$ is $c=0$. Hence, $\{\mathbf{v}\}$ is linearly independent.

Linear

The zero vector and linear dependence

Theorem

A set consisting of a single vector \mathbf{v} is linearly dependent if and only if $\mathbf{v}=\mathbf{0}$. Therefore, any set consisting of a single nonzero vector is linearly independent.
In fact, including $\mathbf{0}$ in any set of vectors will produce the linear dependency

$$
\mathbf{0}+0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{n}=\mathbf{0}
$$

Theorem
Any set of vectors that includes the zero vector is linearly dependent.

1. Find a linear dependency among the vectors

$$
f_{1}(x)=1, \quad f_{2}(x)=2 \sin ^{2} x, \quad f_{3}(x)=-5 \cos ^{2} x
$$

in the vector space $C^{0}(\mathbb{R})$.
2. If $\mathbf{v}_{1}=(1,2,-1), \mathbf{v}_{2}=(2,-1,1)$, and $\mathbf{v}_{3}=(8,1,1)$, show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent in \mathbb{R}^{3} by exhibiting a linear dependency.

Proposition

Any set of vectors that are not all zero contains a linearly independent subset with the same span.

Proof.
Remove $\mathbf{0}$ and any vectors that are linear combinations of the others.

Theorem

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n} and $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{k}\end{array}\right]$.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n} and $A=\left(\begin{array}{ccc}\mathbf{v}_{1} & \cdots & \mathbf{v}_{k}\end{array}\right]$.
Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent if and only if the linear system $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.

Corollary

1. If $k>n$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent.
2. If $k=n$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent if and only if $\operatorname{det}(A)=0$.

Criteria for linear dependence

Definition

A set of functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is linearly independent on an interval I if the only values of the scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \text { for all } x \in I
$$

$$
\text { are } c_{1}=c_{2}=\cdots=c_{n}=0
$$

Definition

Let $f_{1}, f_{2}, \ldots, f_{n} \in C^{n-1}(I)$. The Wronskian of these functions is

$$
W\left[f_{1}, \ldots, f_{n}\right](x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)
\end{array}\right| .
$$ dependence or independence.

Since we can remove vectors from a linearly dependent set without changing the span, a "minimal spanning set" should be linearly independent.

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in a vector space V is called a basis (plural bases) for V if

1. The vectors are linearly independent.
2. They span V.

Examples

1. The standard basis for \mathbb{R}^{n} is

$$
\mathbf{e}_{1}=(1,0,0, \ldots), \mathbf{e}_{2}=(0,1,0, \ldots), \ldots
$$

2. Any linearly independent set is a basis for its span.
Span, Linear Independence,
3. Find a basis for $M_{2}(\mathbb{R})$.
4. Find a basis for P_{2}.

In general, the standard basis for P_{n} is

$$
\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

If

$$
A=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[v_{i j}\right]
$$

then the system $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution because $\operatorname{rank}(A) \leq 3$. Such a nontrivial solution is a linear dependency among $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, so in fact they do not form a basis.

Theorem
If a vector space has a basis consisting of m vectors, then any set of more than m vectors is linearly dependent.

Corollary

Any two bases for a single vector space have the same number of elements.

Definition

The number of elements in any basis is the dimension of the vector space. We denote it $\operatorname{dim} V$.

Examples

1. $\operatorname{dim} \mathbb{R}^{n}=n$
2. $\operatorname{dim} M_{m \times n}(\mathbb{R})=m n$
3. $\operatorname{dim} P_{n}=n+1$
4. $\operatorname{dim} P=\infty$
5. $\operatorname{dim} C^{k}(I)=\infty$
6. $\operatorname{dim}\{\mathbf{0}\}=0$

A vector space is called finite dimensional if it has a basis with a finite number of elements, or infinite dimensional otherwise.

Span, Linear Independence, Dimension

Linear

Theorem If $\operatorname{dim} V=n$, then any set of n linearly independent vectors in V is a basis.

Theorem
If $\operatorname{dim} V=n$, then any set of n vectors that spans V is a basis.

Corollary

If S is a subspace of a vector space V then

$$
\operatorname{dim} S \leq \operatorname{dim} V
$$

and $S=V$ only if $\operatorname{dim} S=\operatorname{dim} V$.

