Solving Linear
Systems
Math 240

Solving Linear

Systems

Solving Linear Systems, Continued and

 The Inverse of a Matrix

 The Inverse of a Matrix}

Math 240 - Calculus III

Summer 2013, Session II
Monday, July 15, 2013

1. Solving Linear Systems

Gauss-Jordan elimination The rank of a matrix
2. The inverse of a square matrix

Definition
Computing inverses
Properties of inverses
Using inverse matrices
Conclusion

Gaussian elimination

Solving Linear Systems
Gauss-Jordan elimination
Rank
Inverse
matrices
Definition
Computing
inverses
Properties of
inverses
Using inverse matrices Conclusion

Steps

1. P_{12}
2. $A_{12}(-3)$
3. $A_{13}(-2)$
4. $A_{32}(-1)$
5. $A_{23}(-3)$
6. $M_{3}\left(\frac{-1}{13}\right)$

Back substitution gives the solution $(1,-1,2)$.

Gauss-Jordan elimination

Solving Linear Systems
Gauss-Jordan elimination

Steps

$$
\begin{array}{lll}
\text { 1. } A_{32}(-3) & \text { 2. } A_{31}(-1) & \text { 3. } A_{21}(2)
\end{array}
$$

Now, without any back substitution, we can see that the solution is $(1,-1,2)$.

The method of solving a linear system by reducing its augmented matrix to RREF is called Gauss-Jordan elimination.

Solving Linear

The rank of a matrix

Solving Linear
Systems
Gauss-Jordan elimination Rank

Definition

The rank of a matrix, A, is the number of nonzero rows it has after reduction to REF. It is denoted by $\operatorname{rank}(A)$.
If A the coefficient matrix of an $m \times n$ linear system and $\operatorname{rank}\left(A^{\#}\right)=\operatorname{rank}(A)=n$ then the REF looks like

$$
\left[\begin{array}{ccccc}
1 & * & * & \cdots & * \\
& 1 & * & \ldots & * \\
& & \ddots & & \vdots \\
0 & & & 1 & * \\
0 & \ldots & \ldots & \ldots & 0
\end{array}\right] \leadsto \begin{array}{lll}
x_{1} & = & * \\
x_{2} & = & * \\
& & \\
x_{n} & = & *
\end{array}
$$

Lemma

Suppose $A \mathbf{x}=\mathbf{b}$ is an $m \times n$ linear system with augmented matrix $A^{\#}$. If $\operatorname{rank}\left(A^{\#}\right)=\operatorname{rank}(A)=n$ then the system has a unique solution.

Solving Linear

The rank of a matrix

Solving Linear
Systems
Gauss-Jordan elimination Rank

Example

Determine the solution set of the linear system

$$
\begin{aligned}
x_{1}+x_{2}-x_{3}+x_{4} & =1 \\
2 x_{1}+3 x_{2}+x_{3} & =4 \\
3 x_{1}+5 x_{2}+3 x_{3}-x_{4} & =5
\end{aligned}
$$

Reduce the augmented matrix.

$$
\left[\begin{array}{rrrrr}
1 & 1 & -1 & 1 & 1 \\
2 & 3 & 1 & 0 & 4 \\
3 & 5 & 3 & -1 & 5
\end{array}\right] \xrightarrow[A_{23}(-2)]{\begin{array}{l}
A_{12}(-2) \\
A_{13}(-3)
\end{array}}\left[\begin{array}{rrrrr}
1 & 1 & -1 & 1 & 1 \\
0 & 1 & 3 & -2 & 2 \\
0 & 0 & 0 & 0 & -2
\end{array}\right]
$$

The last row says $0=-2$; the system is inconsistent.

Lemma

Suppose $A \mathbf{x}=\mathbf{b}$ is a linear system with augmented matrix $A^{\#}$. If $\operatorname{rank}\left(A^{\#}\right)>\operatorname{rank}(A)$ then the system is inconsistent.

Solving Linear

The rank of a matrix

Solving Linear
Systems
Gauss-Jordan elimination Rank

Example

Determine the solution set of the linear system

$$
\begin{aligned}
& 5 x_{1}-6 x_{2}+x_{3}=4, \\
& 2 x_{1}-3 x_{2}+x_{3}=1, \\
& 4 x_{1}-3 x_{2}-x_{3}=5
\end{aligned}
$$

Reduce the augmented matrix.

$$
\left[\begin{array}{rrrr}
5 & -6 & 1 & 4 \\
2 & -3 & 1 & 1 \\
4 & -3 & -1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightsquigarrow x_{1} \begin{array}{r}
-x_{3}=2 \\
x_{2}-x_{3}=1
\end{array}
$$

The unknown x_{3} can assume any value. Let $x_{3}=t$. Then by back substitution we get $x_{2}=t+1$ and $x_{1}=t+2$. Thus, the solution set is the line

The rank of a matrix

Definition

When an unknown variable in a linear system is free to assume any value, we call it a free variable. Variables that are not free are called bound variables.
The value of a bound variable is uniquely determined by a choice of values for all of the free variables in the system.

Lemma
Suppose $A \mathbf{x}=\mathbf{b}$ is an $m \times n$ linear system with augmented matrix $A^{\#}$. If $\operatorname{rank}\left(A^{\#}\right)=\operatorname{rank}(A)<n$ then the system has an infinite number of solutions. Such a system will have $n-\operatorname{rank}\left(A^{\#}\right)$ free variables.

Solving Linear

Solving linear systems with free variables

Solving Linear
Systems
Gauss-Jordan elimination Rank

Inverse
matrices
Definition
Computing inverses

Example

Use Gaussian elimination to solve

$$
\begin{aligned}
x_{1}+2 x_{2}-2 x_{3}-x_{4} & =3 \\
3 x_{1}+6 x_{2}+x_{3}+11 x_{4} & =16 \\
2 x_{1}+4 x_{2}-x_{3}+4 x_{4} & =9
\end{aligned}
$$

Reducing to row-echelon form yields

$$
\begin{array}{r}
x_{1}+2 x_{2}-2 x_{3}-x_{4}=3, \\
x_{3}+2 x_{4}=1
\end{array}
$$

Choose as free variables those variables that do not have a pivot in their column.

In this case, our free variables will be x_{2} and x_{4}. The solution set is the plane

$$
\{(5-2 s-3 t, s, 1-2 t, t): s, t \in \mathbb{R}\}
$$

The inverse of a square matrix

Can we divide by a matrix? What properties should the inverse matrix have?

Definition

Suppose A is a square, $n \times n$ matrix. An inverse matrix for A is an $n \times n$ matrix, B, such that

$$
A B=I_{n} \quad \text { and } \quad B A=I_{n} .
$$

If A has such an inverse then we say that it is invertible or nonsingular. Otherwise, we say that A is singular.

Remark

Not every matrix is invertible.
If you have a linear system $A \mathbf{x}=\mathbf{b}$ and B is an inverse matrix for A then the linear system has the unique solution

$$
\mathbf{x}=B \mathbf{b}
$$

Solving Linear

The inverse of a square matrix

Solving Linear
Systems
Gauss-Jordan elimination Rank

Example

If

$$
A=\left[\begin{array}{lll}
1 & -1 & 2 \\
2 & -3 & 3 \\
1 & -1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{rrr}
0 & -1 & 3 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]=A^{-1}
$$

then B is the inverse of A.
Theorem (Matrix inverses are well-defined)
Suppose A is an $n \times n$ matrix. If B and C are two inverses of A then $B=C$.
Thus, we can write A^{-1} for the inverse of A with no ambiguity.
Useful Example
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $a d-b c \neq 0$ then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Finding the inverse of a matrix

Inverse matrices sound great! How do I find one?
Suppose A is a 3×3 invertible matrix. If $A^{-1}=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right]$ then

$$
A \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], A \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } A \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

We can find A^{-1} by solving 3 linear systems at once!
In general, form the augmented matrix and reduce to RREF.
You end up with A^{-1} on the right.

$$
\left[\begin{array}{l|l}
A & I_{n}
\end{array}\right] \rightsquigarrow\left[I_{n} \mid A^{-1}\right]
$$

Solving Linear Systems

Finding the inverse of a matrix

Solving Linear
Systems
Gauss-Jordan elimination Rank

Example
Let's find the inverse of $A=\left[\begin{array}{lll}1 & -1 & 2 \\ 2 & -3 & 3 \\ 1 & -1 & 1\end{array}\right]$.
Take the augmented matrix and row reduce.

$$
\left[\begin{array}{lll|lll}
1 & -1 & 2 & 1 & 0 & 0 \\
2 & -3 & 3 & 0 & 1 & 0 \\
1 & -1 & 1 & 0 & 0 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & \begin{array}{lrr}
0 & -1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \\
\underbrace{1}_{A^{-1}} & -1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

Steps

1. $A_{12}(-2)$
2. $A_{13}(-1)$
3. $M_{2}(-1)$
4. $M_{3}(-1)$
5. $A_{32}(-1)$
6. $A_{31}(-2)$
7. $A_{21}(1)$

Solving Linear

Finding the inverse of a matrix

Solving Linear
Systems
Gauss-Jordan elimination

In order to find the inverse of a matrix, A, we row reduced an augmented matrix with A on the left. What if we don't end up with I_{n} on the left?

Theorem

An $n \times n$ matrix, A, is invertible if and only if $\operatorname{rank}(A)=n$.

Example

Find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$.
Try to reduce the matrix to RREF.

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] \xrightarrow{A_{12}(-2)}\left[\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right]
$$

Since $\operatorname{rank}(A)<2$, we conclude that A is not invertible. Notice that $(1)(6)-(3)(2)=0$.

Solving Linear

Finding the inverse of a matrix

Solving Linear
Systems
Gauss-Jordan elimination

Diagonal matrices have simple inverses.

Proposition

The inverse of a diagonal matrix is the diagonal matrix with reciprocal entries.

$$
\left[\begin{array}{lll}
a_{11} & & 0 \\
0 & \ddots & \\
0 & a_{n n}
\end{array}\right]^{-1}=\left[\begin{array}{lll}
a_{11}^{-1} & & 0 \\
\bigcap & \ddots & \\
a_{n n}^{-1}
\end{array}\right]
$$

Upper and lower triangular matrices have inverses of the same form.

Proposition

The inverse of an upper triangular matrix is upper triangular. The inverse of a lower triangular matrix is lower triangular.

Solving Linear

Properties of inverse matrices

Solving Linear

Systems

Suppose A and B are $n \times n$ invertible matrices.

- A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
- $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
- A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Corollary

Suppose $A_{1}, A_{2}, \ldots, A_{k}$ are invertible $n \times n$ matrices. Then their product, $A_{1} A_{2} \cdots A_{k}$ is invertible, and

$$
\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{1}^{-1}
$$

Solving Linear

Using inverse matrices

Solving Linear
Systems

Gauss-Jordan

 elimination RankInverse
matrices
Definition
Computing
inverses inverses Properties of inverses

Recall that if A is an invertible matrix then the linear system $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Example

Solve the linear system

$$
\begin{array}{r}
x_{1}+3 x_{2}=1 \\
2 x_{1}+5 x_{2}=3
\end{array}
$$

The coefficient matrix is $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$, so $A^{-1}=\left[\begin{array}{rr}-5 & 3 \\ 2 & -1\end{array}\right]$.
The inverse of a 2×2 matrix is

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \text { when } a d-b c \neq 0
$$

Hence, $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{rr}-5 & 3 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}4 \\ -1\end{array}\right]$.

Inverse matrices are an elegant way of solving linear systems. They do have some drawbacks:

- They are only applicable when the coefficient matrix is square.
- Even in the case of a square matrix, an inverse may not exist.
- They are hard to compute, at least as complicated as doing Gauss-Jordan elimination.
However, they can be useful if
- the coefficient matrix has an obvious inverse,
- you need to solve multiple linear systems with the same coefficients.

