Matrices

Math 240 - Calculus III

Summer 2013, Session II
Wednesday, July 10, 2013

Definitions and Notation

Definitions and Notation

Definition

An $m \times n$ matrix is a rectangular array of numbers arranged in m horizontal rows and n vertical columns. These numbers are called the entries or elements of the matrix.

Example

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is an $m \times n$ matrix. It can be written more succinctly as $A=\left[a_{i j}\right]$.
Two matrices are equal if they have the same size (identical numbers of rows and columns) and the same entries.

Row and column vectors

Definitions

Definition

A $1 \times n$ matrix is called a row n-vector, or simply a row vector. An $n \times 1$ matrix is called a column n-vector, or a column vector. The elements of a such a vector are its components.

Examples

1. The matrix $\mathbf{a}=\left[\begin{array}{lll}\frac{2}{3} & -\frac{1}{5} & \frac{4}{7}\end{array}\right]$ is a row 3-vector.
2. $\mathbf{b}=\left[\begin{array}{r}1 \\ -1 \\ 3 \\ 4\end{array}\right]$ is a column 4 -vector.

Row and column vectors

Definitions and Notation

$$
A=\left[\begin{array}{rrrr}
-2 & 1 & 3 & 4 \\
1 & 2 & 1 & 1 \\
3 & -1 & 2 & 5
\end{array}\right]
$$

has three row 4-vectors:

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[\begin{array}{llll}
-2 & 1 & 3 & 4
\end{array}\right], \\
& \mathbf{a}_{2}=\left[\begin{array}{llll}
1 & 2 & 1 & 1
\end{array}\right], \text { and } \\
& \mathbf{a}_{3}=\left[\begin{array}{llll}
3 & -1 & 2 & 5
\end{array}\right]
\end{aligned}
$$

and we can write

$$
A=\left[\begin{array}{l}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\mathbf{a}_{3}
\end{array}\right]
$$

Row and column vectors

Definitions and Notation

$$
A=\left[\begin{array}{rrrr}
-2 & 1 & 3 & 4 \\
1 & 2 & 1 & 1 \\
3 & -1 & 2 & 5
\end{array}\right]
$$

has four column 3 -vectors:

$$
\mathbf{b}_{1}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right] \text {, and } \mathbf{b}_{4}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right]
$$

and we can write

$$
A=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4}
\end{array}\right] .
$$

Definitions and Notation

Definition

If A is the matrix $A=\left[a_{i j}\right]$, the transpose of A is the matrix $A^{T}=\left[a_{j i}\right]$.
If A is an $m \times n$ matrix then A^{T} is an $n \times m$ matrix.

Example

Suppose A is the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

Then

$$
A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Types of matrices

Square An $n \times n$ matrix is called a square matrix since it has the same number of rows and columns. The elements $a_{i i}$ make up the main diagonal.
Triangular A square matrix is called upper triangular if

$$
a_{i j}=0 \text { whenever } i>j,
$$

that is, it has only zeros below the main diagonal. A lower triangular matrix is a square matrix with only zeros above the main diagonal, that is,

$$
a_{i j}=0 \text { whenever } i<j .
$$

Diagonal A diagonal matrix is a square matrix whose only nonzero entries lie along the main diagonal, that is,

$$
a_{i j}=0 \text { whenever } i \neq j
$$

Types of matrices

Symmetric A matrix satisfying $A^{T}=A$ is called a symmetric matrix.
Skew-symmetric A matrix that satisfies $A^{T}=-A$ is called skew-symmetric.

Notice that

- both symmetric and skew-symmetric matrices must be square (because if A is $m \times n$ then A^{T} is $n \times m$),
- a skew-symmetric matrix must have zeros along its main diagonal (because $a_{i i}=-a_{i i}$).

Matrix functions

Definition

A matrix function is like a matrix, but replaces numbers with functions of a single real variable. Column vector functions and row vector functions are analogously defined.

Example

$A(t)$ is a 2×3 matrix function:

$$
A(t)=\left[\begin{array}{ccc}
t^{3} & t-\cos t & \frac{5}{t} \\
e^{t^{2}} & \ln (t+1) & t e^{t}
\end{array}\right]
$$

The matrix function is only defined for values of t such that all elements are defined. In this example, $A(t)$ is defined for values of t such that $t \neq 0$ and $t+1>0$.

Matrix addition

Definitions

Definition

If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices with the same dimensions, their sum is

$$
A+B=\left[a_{i j}+b_{i j}\right]
$$

Similarly, their difference is

$$
A-B=\left[a_{i j}-b_{i j}\right]
$$

Example
We have

$$
\left[\begin{array}{lll}
2 & -1 & 3 \\
4 & -5 & 0
\end{array}\right]+\left[\begin{array}{lll}
-1 & 0 & 5 \\
-5 & 2 & 7
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 8 \\
-1 & -3 & 7
\end{array}\right]
$$

and

$$
\left[\begin{array}{lll}
2 & -1 & 3 \\
4 & -5 & 0
\end{array}\right]-\left[\begin{array}{lll}
-1 & 0 & 5 \\
-5 & 2 & 7
\end{array}\right]=\left[\begin{array}{lll}
3 & -1 & -2 \\
9 & -7 & -7
\end{array}\right]
$$

Scalar multiplication

A scalar is a real or complex number, as opposed to a vector or matrix.

Definition
If A is a matrix and s a scalar, then the product of s with A is the matrix obtained by multiplying every element of A by s.
Symbolically, if $A=\left[a_{i j}\right]$ then $s A=\left[s a_{i j}\right]$.
Examples
If $A=\left[\begin{array}{rr}2 & -1 \\ 4 & 6\end{array}\right]$ then $5 A=\left[\begin{array}{rr}10 & -5 \\ 20 & 30\end{array}\right]$.
If A and B are matrices with the same dimensions then

$$
A-B=A+(-1) B
$$

Matrices behave like you expect

Matrix addition, subtraction, and scalar multiplication have familiar properties:

- $A+B=B+A$
- $A+(B+C)=(A+B)+C$
- $1 A=A$
- $s(A+B)=s A+s B$
- $(s+t) A=s A+t A$
- $s(t A)=(s t) A=(t s) A=t(s A)$

$$
\mathbf{0}=\left[\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right]
$$

- $A+\mathbf{0}=A$
- $A-A=\mathbf{0}$
- $0 A=\mathbf{0}$
... but matrix multiplication does not!

Matrix multiplication

Example

$$
\begin{aligned}
& \text { sprockets belts propellers } \\
& P=\begin{array}{c}
\text { widget A } \\
\text { widget B }
\end{array}\left[\begin{array}{lll}
5 & 2 & 3 \\
6
\end{array}\right] \\
& \text { supplier } 1 \text { supplier } 2 \\
& \text { supplier } 1 \text { supplier } 2 \\
& \left.P C=\begin{array}{l}
\text { widget A } \\
\text { widget B }
\end{array} \begin{array}{ll}
4.50 & 4.65 \\
3.10 & 2.40
\end{array}\right]
\end{aligned}
$$

Matrix multiplication

Definition

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and $B=\left[b_{j k}\right]$ be an $n \times p$ matrix. Their product is the $m \times p$ matrix

$$
A B=\left[c_{i k}\right] \text { where } c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}
$$

If write write A as a matrix of rows and B as a matrix of columns,

$$
A=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\vdots \\
\mathbf{a}_{m}
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{p}
\end{array}\right]
$$

then we can express their product using the vector dot product

$$
A B=\left[\mathbf{a}_{i} \cdot \mathbf{b}_{k}\right] .
$$

Familiar properties of matrix multiplication

In most ways matrix multiplication behaves like multiplication of scalars:

- $A(B C)=(A B) C$
- $A(B+C)=A B+A C$
- $(A+B) C=A C+B C$
- $(s A) B=s(A B)=A(s B)$

Definition

The identity matrix, I_{n} (or just I), is the $n \times n$ diagonal matrix with ones on the main diagonal.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \text { etc. }
$$

If A is an $m \times n$ matrix then

$$
A I_{n}=A \quad \text { and } \quad I_{m} A=A
$$

Matrix multiplication is not commutative

If A and B are $n \times n$ matrices, it is not always true that $A B=B A$.

Example
If $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$ and $B=\left[\begin{array}{rr}3 & 1 \\ 2 & -1\end{array}\right]$ then

$$
A B=\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{ll}
7 & -1 \\
3 & -4
\end{array}\right]
$$

but

$$
B A=\left[\begin{array}{rr}
3 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 9 \\
3 & 1
\end{array}\right]
$$

Matrix function algebra

All of the operations we discussed can be applied to matrix functions.

In the case of scalar multiplication, a matrix function can be multiplied by any scalar function.

Example
If $s(t)=e^{t}$ and $A(t)=\left[\begin{array}{cc}-2+t & e^{2 t} \\ 4 & \cos t\end{array}\right]$, their product is

$$
s(t) A(t)=\left[\begin{array}{cc}
e^{t}(-2+t) & e^{3 t} \\
4 e^{t} & e^{t} \cos t
\end{array}\right] .
$$

Matrix function algebra

Additionally, we can do calculus with matrix functions!

Definition

Suppose $A(t)=\left[a_{i j}(t)\right]$ is a matrix function. Its derivative is

$$
\frac{d A}{d t}=\left[\frac{d a_{i j}(t)}{d t}\right]
$$

and its integral over the interval $[a, b]$ is

$$
\int_{a}^{b} A(t) d t=\left[\int_{a}^{b} a_{i j}(t) d t\right]
$$

Theorem (Matrix product rule)
If A and B are differentiable matrix functions and the product $A B$ is defined then

$$
\frac{d}{d t}(A B)=A \frac{d B}{d t}+\frac{d A}{d t} B
$$

Definitions
and Notation

Matrix

Algebra
Matrix function algebra

Example
Let $A(t)=\left[\begin{array}{cc}2 t & 1 \\ 6 t^{2} & 4 e^{2 t}\end{array}\right]$. We have

$$
\frac{d A}{d t}=\left[\begin{array}{cc}
2 & 0 \\
12 t & 8 e^{2 t}
\end{array}\right]
$$

and

$$
\int_{0}^{1} A(t) d t=\left[\begin{array}{cc}
1 & 1 \\
2 & 2 e^{2}-2
\end{array}\right] .
$$

