Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Matrices

Math 240 — Calculus III

Summer 2013, Session II

Wednesday, July 10, 2013

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

1. Definitions and Notation

2. Matrix Algebra Matrix function algebra

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Definitions and Notation

Definition

An $m \times n$ matrix is a rectangular array of numbers arranged in m horizontal rows and n vertical columns. These numbers are called the **entries** or **elements** of the matrix.

Example

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

is an $m\times n$ matrix. It can be written more succinctly as $A=[a_{ij}].$

Two matrices are equal if they have the same size (identical numbers of rows and columns) and the same entries.

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Row and column vectors

Definition

A $1 \times n$ matrix is called a row *n*-vector, or simply a row vector. An $n \times 1$ matrix is called a column *n*-vector, or a column vector. The elements of a such a vector are its components.

Examples

1. The matrix
$$\mathbf{a} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{5} & \frac{4}{7} \end{bmatrix}$$
 is a row 3-vector.
2. $\mathbf{b} = \begin{bmatrix} 1\\ -1\\ 3\\ 4 \end{bmatrix}$ is a column 4-vector.

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Any matrix can be written as a list of row or column vectors.

Example The matrix

 $A = \begin{bmatrix} -2 & 1 & 3 & 4 \\ 1 & 2 & 1 & 1 \\ 3 & -1 & 2 & 5 \end{bmatrix}$

has three row 4-vectors:

$$\begin{aligned} \mathbf{a}_1 &= \begin{bmatrix} -2 & 1 & 3 & 4 \end{bmatrix}, \\ \mathbf{a}_2 &= \begin{bmatrix} 1 & 2 & 1 & 1 \end{bmatrix}, \text{ and} \\ \mathbf{a}_3 &= \begin{bmatrix} 3 & -1 & 2 & 5 \end{bmatrix} \end{aligned}$$

and we can write

$$A = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix}.$$

Row and column vectors

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Any matrix can be written as a list of row or column vectors.

Example

The matrix

$$A = \begin{bmatrix} -2 & 1 & 3 & 4 \\ 1 & 2 & 1 & 1 \\ 3 & -1 & 2 & 5 \end{bmatrix}$$

has four column 3-vectors:

$$\mathbf{b}_1 = \begin{bmatrix} -2\\1\\3 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \ \mathbf{b}_3 = \begin{bmatrix} 3\\1\\2 \end{bmatrix}, \ \text{and} \ \mathbf{b}_4 = \begin{bmatrix} 4\\1\\5 \end{bmatrix}$$

and we can write

$$A = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{b}_4 \end{bmatrix}.$$

Row and column vectors

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Definition If A is the matrix $A = [a_{ij}]$, the **transpose** of A is the matrix $A^T = [a_{ji}]$. If A is an $m \times n$ matrix then A^T is an $n \times m$ matrix. Example Suppose A is the matrix

Suppose A is the matrix

Then

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$
$$A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}.$$

Г. **с**

~ 7

Transpose

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Types of matrices

Square An $n \times n$ matrix is called a square matrix since it has the same number of rows and columns. The elements a_{ii} make up the main diagonal. Triangular A square matrix is called **upper triangular** if $a_{ii} = 0$ whenever i > j, that is, it has only zeros below the main diagonal. A lower triangular matrix is a square matrix with only zeros *above* the main diagonal, that is, $a_{ij} = 0$ whenever i < j. Diagonal A diagonal matrix is a square matrix whose only nonzero entries lie along the main diagonal, that is.

$$a_{ij} = 0$$
 whenever $i \neq j$.

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra Symmetric A matrix satisfying $A^T = A$ is called a symmetric matrix. Skew-symmetric A matrix that satisfies $A^T = -A$ is called skew-symmetric.

Types of matrices

Notice that

- ▶ both symmetric and skew-symmetric matrices must be square (because if A is m × n then A^T is n × m),
- ➤ a skew-symmetric matrix must have zeros along its main diagonal (because a_{ii} = -a_{ii}).

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Matrix functions

Definition

A matrix function is like a matrix, but replaces numbers with functions of a single real variable. Column vector functions and row vector functions are analogously defined.

Example

A(t) is a 2×3 matrix function:

$$A(t) = \begin{bmatrix} t^3 & t - \cos t & \frac{5}{t} \\ e^{t^2} & \ln(t+1) & te^t \end{bmatrix}.$$

The matrix function is only defined for values of t such that *all* elements are defined. In this example, A(t) is defined for values of t such that $t \neq 0$ and t + 1 > 0.

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Definition

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are matrices with the same dimensions, their sum is

$$A + B = [a_{ij} + b_{ij}].$$

Similarly, their difference is

$$A - B = [a_{ij} - b_{ij}].$$

Example

We have

$$\begin{bmatrix} 2 & -1 & 3 \\ 4 & -5 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 5 \\ -5 & 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 8 \\ -1 & -3 & 7 \end{bmatrix}$$

and

$$\begin{bmatrix} 2 & -1 & 3 \\ 4 & -5 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 & 5 \\ -5 & 2 & 7 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -2 \\ 9 & -7 & -7 \end{bmatrix}.$$

Matrix addition

Math 240

Definitions and Notatior

Matrix Algebra

Matrix function algebra A **scalar** is a real or complex number, as opposed to a vector or matrix.

Definition

If A is a matrix and s a scalar, then the product of s with A is the matrix obtained by multiplying every element of A by s. Symbolically, if $A = [a_{ij}]$ then $sA = [sa_{ij}]$.

Examples

If
$$A = \begin{bmatrix} 2 & -1 \\ 4 & 6 \end{bmatrix}$$
 then $5A = \begin{bmatrix} 10 & -5 \\ 20 & 30 \end{bmatrix}$.

If A and B are matrices with the $\mathit{same \ dimensions}$ then

$$A - B = A + (-1)B.$$

Scalar multiplication

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Matrices behave like you expect

Matrix addition, subtraction, and scalar multiplication have familiar properties:

- $\blacktriangleright A + B = B + A$
- $\blacktriangleright A + (B + C) = (A + B) + C$
- ► 1A = A
- $\blacktriangleright \ s(A+B) = sA + sB$
- $\blacktriangleright (s+t)A = sA + tA$

$$\blacktriangleright \ s(tA) = (st)A = (ts)A = t(sA)$$

$$\mathbf{0} = \begin{bmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \qquad \qquad \mathbf{b} \quad A + \mathbf{0} = A$$
$$\mathbf{b} \quad A - A = \mathbf{0}$$
$$\mathbf{b} \quad 0A = \mathbf{0}$$

... but matrix multiplication does not!

Matrix multiplication

Matrices

Math 240

Definitions and Notation

Example

Matri× Algebra

Matrix function algebra

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Definition Let $A = [a_{ij}]$ be an $m \times n$ matrix and $B = [b_{jk}]$ be an $n \times p$

n

matrix. Their product is the $m \times p$ matrix

$$AB = [c_{ik}]$$
 where $c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$.

If write write A as a matrix of rows and B as a matrix of columns,

$$A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} \text{ and } B = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{bmatrix},$$

then we can express their product using the vector dot product

$$AB = [\mathbf{a}_i \cdot \mathbf{b}_k].$$

Matrix multiplication

Math 240

Definitions and Notatior

Matrix Algebra

Matrix function algebra

Familiar properties of matrix multiplication

In most ways matrix multiplication behaves like multiplication of scalars:

- $\blacktriangleright \ A(BC) = (AB)C$
- $\bullet \ A(B+C) = AB + AC$
- $\bullet \ (A+B)C = AC + BC$
- $\blacktriangleright \ (sA)B = s(AB) = A(sB)$

Definition

The **identity matrix**, I_n (or just I), is the $n \times n$ diagonal matrix with ones on the main diagonal.

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
 etc.

If A is an $m\times n$ matrix then

$$AI_n = A$$
 and $I_m A = A$.

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Matrix multiplication is not commutative

If A and B are $n \times n$ matrices, it is not always true that AB = BA.

Example

If
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$ then
$$AB = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 7 & -1 \\ 3 & -4 \end{bmatrix}$$

but

$$BA = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ 3 & 1 \end{bmatrix}.$$

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra All of the operations we discussed can be applied to matrix functions.

In the case of scalar multiplication, a matrix function can be multiplied by any *scalar function*.

Example

f
$$s(t) = e^t$$
 and $A(t) = \begin{bmatrix} -2+t & e^{2t} \\ 4 & \cos t \end{bmatrix}$, their product is
$$s(t)A(t) = \begin{bmatrix} e^t(-2+t) & e^{3t} \\ 4e^t & e^t \cos t \end{bmatrix}.$$

Matrix function algebra

Math 240

Definitions and Notatior

Matrix Algebra

Matrix function algebra

Matrix function algebra

Additionally, we can do calculus with matrix functions! Definition

Suppose $A(t) = [a_{ij}(t)]$ is a matrix function. Its derivative is

$$\frac{dA}{dt} = \left[\frac{da_{ij}(t)}{dt}\right]$$

and its **integral** over the interval [a, b] is

$$\int_{a}^{b} A(t) dt = \left[\int_{a}^{b} a_{ij}(t) dt \right].$$

Theorem (Matrix product rule)

If A and B are differentiable matrix functions and the product AB is defined then

$$\frac{d}{dt}\left(AB\right) = A\frac{dB}{dt} + \frac{dA}{dt}B.$$

Matrix function algebra

Math 240

Definitions and Notation

Matrix Algebra

Matrix function algebra

Example Let $A(t) = \begin{bmatrix} 2t & 1\\ 6t^2 & 4e^{2t} \end{bmatrix}$. We have $\frac{dA}{dt} = \begin{bmatrix} 2 & 0\\ 12t & 8e^{2t} \end{bmatrix}$ and

٠

$$\int_0^1 A(t) \, dt = \begin{bmatrix} 1 & 1 \\ 2 & 2e^2 - 2 \end{bmatrix}.$$