Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Green's Theorem and Parameterized Surfaces

Math 240 — Calculus III

Summer 2013, Session II

Tuesday, July 2, 2013

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes 1. Green's Theorem Calculating area

2. Parameterized Surfaces Tangent and normal vectors Tangent planes

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Green's theorem

Theorem

Let D be a closed, bounded region in \mathbb{R}^2 whose boundary $C = \partial D$ consists of finitely many simple, closed C^1 curves. Orient C so that D is on the left as you traverse C. If $\mathbf{F} = M \mathbf{i} + N \mathbf{j}$ is a C^1 vector field on D then

$$\oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx \, dy.$$

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes Let $\mathbf{F} = xy \, \mathbf{i} + y^2 \mathbf{j}$ and let D be the first quadrant region bounded by the line y = x and the parabola $y = x^2$. Let's calculate $\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s}$ in two ways.

Example

First, we can calculate it directly. Parameterize ∂D using two pieces:

$$C_1: \begin{cases} x=t\\ y=t^2 \end{cases} \quad \text{and} \quad C_2: \begin{cases} x=1-t\\ y=1-t \end{cases}$$

with t varying from 0 to 1 for each. The integral is

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \int_{C_1} xy \, dx + y^2 dy + \int_{C_2} xy \, dx + y^2 dy$$
$$= \int_0^1 (t^3 + 2t^5) \, dt + \int_0^1 2(1-t)^2 (-dt) = -\frac{1}{12}.$$

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Example

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \int_{C_1} xy \, dx + y^2 dy + \int_{C_2} xy \, dx + y^2 dy$$
$$= \int_0^1 (t^3 + 2t^5) \, dt + \int_0^1 2(1-t)^2 (-dt) = -\frac{1}{12}.$$

Now, let's do the calculation using Green's theorem.

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \left[\frac{\partial}{\partial x} y^2 - \frac{\partial}{\partial y} (xy) \right] dx \, dy$$
$$= \int_{0}^{1} \int_{x^2}^{x} -x \, dy \, dx = \int_{0}^{1} x^3 - x^2 \, dx = -\frac{1}{12}.$$

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Using Green's theorem to calculate area

Recall that, if D is any plane region, then

Area of
$$D = \int_D 1 \, dx \, dy$$
.

Thus, if we can find a vector field, $\mathbf{F} = M \mathbf{i} + N \mathbf{j}$, such that $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 1$, then we can use

$$\oint_{\partial D} M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$
$$= \iint_D 1 \, dx \, dy = \text{area of } D$$

to calculate the area of D via a *line integral*!

Here are three such (of many):

$$\mathbf{F} = x \mathbf{j}, \quad \mathbf{F} = -y \mathbf{i}, \quad \text{or } \mathbf{F} = \frac{1}{2} \left(-y \mathbf{i} + x \mathbf{j} \right).$$

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Using Green's theorem to calculate area

Theorem

Suppose D is a plane region to which Green's theorem applies and $\mathbf{F} = M \mathbf{i} + N \mathbf{j}$ is a C^1 vector field such that $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$ is identically 1 on D. Then the area of D is given by

 $\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s}$

where ∂D is oriented as in Green's theorem.

Our three examples from the previous slide yield

Area of
$$D = \begin{cases} \oint_{\partial D} x \, dy \\ \oint_{\partial D} -y \, dx \\ \oint_{\partial D} \frac{1}{2} \left(-y \, dx + x \, dy \right) \end{cases}$$

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Example

We can calculate the area of an ellipse using this method.

Using Green's theorem to calculate area

The ellipse can be parameterize by

 $\mathbf{x}(t) = (a \cos t, b \sin t), \text{ with } 0 \le t \le 2\pi.$

Now our theorem tells us that the area of the ellipse is

$$\frac{1}{2} \int_{\mathbf{x}} -y \, dx + x \, dy = \frac{1}{2} \int_{0}^{2\pi} \left(ab \sin^2 t + ab \cos^2 t \right) dt$$
$$= \frac{1}{2} \int_{0}^{2\pi} ab \, dt = \pi ab.$$

Parameterized surfaces

Green's Thm, Parameterized Surfaces

Math 240

Green's Theorem Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Definition

Let D be a plane region that consists of an open set together with some or all of its boundary. A **parameterized surface** in \mathbb{R}^3 is a continuous map $\mathbf{X} : D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ that is one-to-one on D, except possible along ∂D .

There is a subtle difference between the mapping, X, and its image $\mathbf{X}(D)$, which is just a set of points.

Definition

We refer to $\mathbf{X}(D)$ as the **underlying surface** of \mathbf{X} , or the surface **parameterized** by $\mathbf{X}.$

We use bold letters (e.g. X, Y) to represent *parameterized* surfaces and unbold, upper-case letters (e.g. S, T) to represent the underlying surfaces.

Math 240

Green's Theorem

Calculating area

Parameterized Surfaces

Normal vectors Tangent planes

Examples

1. The parameterization $\mathbf{X}:\mathbb{R}^2\to\mathbb{R}^3$ defined by

$$\mathbf{X}(s,t) = s(\mathbf{i} - \mathbf{j}) + t(\mathbf{i} + 2\mathbf{k}) + 3\mathbf{j}$$

determines a plane.

- 2. Let $D = [0, 2\pi) \times [0, \pi]$ and consider $\mathbf{X} : D \to \mathbb{R}^3$ given by $\mathbf{X}(s, t) = (\cos s)(\sin t) \mathbf{i} + (\sin s)(\sin t) \mathbf{j} + (\cos t) \mathbf{k}.$
- 3. The equations

$$\begin{cases} x = \cos s \\ y = \sin s \\ z = t \end{cases} \quad 0 \le s \le 2\pi$$

satisfy $x^2 + y^2 = 1$, so they parameterize a cylinder.

Parameterized surfaces

Math 240

Green's Theorem

Calculating area

Parameterizeo Surfaces

Normal vectors Tangent planes

Tangent and normal vectors

Definition

Given a parameterization $\mathbf{X}(s,t) = (x(s,t), y(s,t), z(s,t))$, the tangent vector with respect to s is

$$\mathbf{T}_s = \frac{\partial \mathbf{X}}{\partial s} = \frac{\partial x}{\partial s} \mathbf{i} + \frac{\partial y}{\partial s} \mathbf{j} + \frac{\partial z}{\partial s} \mathbf{k}.$$

Similarly, the tangent vector with respect to t is

$$\mathbf{T}_t = \frac{\partial \mathbf{X}}{\partial t} = \frac{\partial x}{\partial t}\mathbf{i} + \frac{\partial y}{\partial t}\mathbf{j} + \frac{\partial z}{\partial t}\mathbf{k}.$$

The standard normal vector is

$$\mathbf{N} = \mathbf{T}_s \times \mathbf{T}_t.$$

Math 240

Green's Theorem Calculating area Parameterized

Normal vectors Tangent planes

Example

The equation $z^2=x^2+y^2$ defines a cone in $\mathbb{R}^3.$ It can be parameterized by

$$\mathbf{X} = s(\cos t)\,\mathbf{i} + s(\sin t)\,\mathbf{j} + s\,\mathbf{k},$$

Tangent and normal vectors

with t varying from 0 to 2π . We have

 $\mathbf{T}_s = (\cos t) \mathbf{i} + (\sin t) \mathbf{j} + \mathbf{k} \text{ and } \mathbf{T}_t = -s(\sin t) \mathbf{i} + s(\cos t) \mathbf{j}.$ Therefore,

$$\mathbf{N} = \mathbf{T}_s \times \mathbf{T}_t = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos t & \sin t & 1 \\ -s \sin t & s \cos t & 0 \end{vmatrix}$$
$$= -s(\cos t) \mathbf{i} - s(\sin t) \mathbf{j} + s \mathbf{k}.$$

Math 240

Green's Theorem Calculating area Parameterized Surfaces Normal vectors

Tangent planes

Definition

We say that a parameterized surface is **smooth** if the parameterization is C^1 and if it has a nonzero normal vector at every point.

Tangent planes

Definition

Let X be a parameterized surface smooth at the point $X(s_0, t_0)$. The **tangent plane** to the surface parameterized by X is the plane that passes through $X(s_0, t_0)$ and has normal vector $N(s_0, t_0)$. It is given by the equation

$$\mathbf{N}(s_0, t_0) \cdot (\mathbf{x} - \mathbf{X}(s_0, t_0)) = 0.$$

If $\mathbf{X}(s_0,t_0) = (x_0,y_0,z_0)$ and $\mathbf{N}(s_0,t_0) = A \, \mathbf{i} + B \, \mathbf{j} + C \, \mathbf{k}$ then the equation can also be written

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$

Math 240

Calculating area Normal vectors Tangent planes

Example

Recall the parameterized cone

$$\mathbf{X}(s,t) = s(\cos t)\,\mathbf{i} + s(\sin t)\,\mathbf{j} + s\,\mathbf{k}$$

Tangent planes

from the previous example. At the point $(0, 1, 1) = \mathbf{X}(1, \frac{\pi}{2})$, our previous calculation gives us

$$\mathbf{T}_s = (0, 1, 1), \ \mathbf{T}_t = (-1, 0, 0), \ \text{and} \ \mathbf{N} = (0, -1, 1).$$

Hence, the equation for the tangent plane is

$$0(x-0) - 1(y-1) + 1(z-1) = 0,$$

which simplifies to

$$z = y$$
.

