Green's Thm,
Parameterized
Surfaces
Math 240
Green's
Theorem
Calculating area
Parameterized
Surfaces

Green's Theorem and Parameterized Surfaces

Math 240 - Calculus III

Summer 2013, Session II

Tuesday, July 2, 2013

1. Green's Theorem
 Calculating area

2. Parameterized Surfaces

Tangent and normal vectors Tangent planes

Green's theorem

Theorem

Let D be a closed, bounded region in \mathbb{R}^{2} whose boundary $C=\partial D$ consists of finitely many simple, closed C^{1} curves. Orient C so that D is on the left as you traverse C. If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ is a C^{1} vector field on D then

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Example

Let $\mathbf{F}=x y \mathbf{i}+y^{2} \mathbf{j}$ and let D be the first quadrant region bounded by the line $y=x$ and the parabola $y=x^{2}$. Let's calculate $\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}$ in two ways.

First, we can calculate it directly.
Parameterize ∂D using two pieces:

$$
C_{1}:\left\{\begin{array}{l}
x=t \\
y=t^{2}
\end{array} \quad \text { and } \quad C_{2}:\left\{\begin{array}{l}
x=1-t \\
y=1-t
\end{array}\right.\right.
$$

with t varying from 0 to 1 for each.
The integral is

$$
\begin{aligned}
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s} & =\int_{C_{1}} x y d x+y^{2} d y+\int_{C_{2}} x y d x+y^{2} d y \\
& =\int_{0}^{1}\left(t^{3}+2 t^{5}\right) d t+\int_{0}^{1} 2(1-t)^{2}(-d t)=-\frac{1}{12}
\end{aligned}
$$

Green's Thm,

Example

$$
\begin{aligned}
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s} & =\int_{C_{1}} x y d x+y^{2} d y+\int_{C_{2}} x y d x+y^{2} d y \\
& =\int_{0}^{1}\left(t^{3}+2 t^{5}\right) d t+\int_{0}^{1} 2(1-t)^{2}(-d t)=-\frac{1}{12}
\end{aligned}
$$

Now, let's do the calculation using Green's theorem.

$$
\begin{aligned}
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s} & =\iint_{D}\left[\frac{\partial}{\partial x} y^{2}-\frac{\partial}{\partial y}(x y)\right] d x d y \\
& =\int_{0}^{1} \int_{x^{2}}^{x}-x d y d x=\int_{0}^{1} x^{3}-x^{2} d x=-\frac{1}{12}
\end{aligned}
$$

Recall that, if D is any plane region, then

$$
\text { Area of } D=\int_{D} 1 d x d y
$$

Thus, if we can find a vector field, $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$, such that $\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=1$, then we can use

$$
\begin{aligned}
\oint_{\partial D} M d x+N d y & =\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
& =\iint_{D} 1 d x d y=\text { area of } D
\end{aligned}
$$

to calculate the area of D via a line integral!
Here are three such (of many):

$$
\mathbf{F}=x \mathbf{j}, \quad \mathbf{F}=-y \mathbf{i}, \quad \text { or } \mathbf{F}=\frac{1}{2}(-y \mathbf{i}+x \mathbf{j}) .
$$

Theorem

Suppose D is a plane region to which Green's theorem applies and $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ is a C^{1} vector field such that $\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}$ is identically 1 on D. Then the area of D is given by

$$
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}
$$

where ∂D is oriented as in Green's theorem.
Our three examples from the previous slide yield

$$
\text { Area of } D=\left\{\begin{array}{l}
\oint_{\partial D} x d y \\
\oint_{\partial D}-y d x \\
\oint_{\partial D} \frac{1}{2}(-y d x+x d y)
\end{array}\right.
$$

Example

We can calculate the area of an ellipse using this method.

The ellipse can be parameterize by

$$
\mathbf{x}(t)=(a \cos t, b \sin t), \text { with } 0 \leq t \leq 2 \pi .
$$

Now our theorem tells us that the area of the ellipse is

$$
\begin{aligned}
\frac{1}{2} \int_{\mathbf{x}}-y d x+x d y & =\frac{1}{2} \int_{0}^{2 \pi}\left(a b \sin ^{2} t+a b \cos ^{2} t\right) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} a b d t=\pi a b
\end{aligned}
$$

Parameterized surfaces

Green's

Theorem
Calculating area
Parameterized Surfaces

Definition

Let D be a plane region that consists of an open set together with some or all of its boundary. A parameterized surface in \mathbb{R}^{3} is a continuous map $\mathbf{X}: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that is one-to-one on D, except possible along ∂D.

There is a subtle difference between the mapping, \mathbf{X}, and its image $\mathbf{X}(D)$, which is just a set of points.

Definition
We refer to $\mathbf{X}(D)$ as the underlying surface of \mathbf{X}, or the surface parameterized by \mathbf{X}.
We use bold letters (e.g. X, Y) to represent parameterized surfaces and unbold, upper-case letters (e.g. S, T) to represent the underlying surfaces.

Examples

1. The parameterization $\mathbf{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
\mathbf{X}(s, t)=s(\mathbf{i}-\mathbf{j})+t(\mathbf{i}+2 \mathbf{k})+3 \mathbf{j}
$$

determines a plane.
2. Let $D=[0,2 \pi) \times[0, \pi]$ and consider $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{X}(s, t)=(\cos s)(\sin t) \mathbf{i}+(\sin s)(\sin t) \mathbf{j}+(\cos t) \mathbf{k}
$$

3. The equations

$$
\left\{\begin{array}{l}
x=\cos s \\
y=\sin s \quad 0 \leq s \leq 2 \pi \\
z=t
\end{array}\right.
$$

satisfy $x^{2}+y^{2}=1$, so they parameterize a cylinder.

Definition

Given a parameterization $\mathbf{X}(s, t)=(x(s, t), y(s, t), z(s, t))$, the tangent vector with respect to s is

$$
\mathbf{T}_{s}=\frac{\partial \mathbf{X}}{\partial s}=\frac{\partial x}{\partial s} \mathbf{i}+\frac{\partial y}{\partial s} \mathbf{j}+\frac{\partial z}{\partial s} \mathbf{k}
$$

Similarly, the tangent vector with respect to t is

$$
\mathbf{T}_{t}=\frac{\partial \mathbf{X}}{\partial t}=\frac{\partial x}{\partial t} \mathbf{i}+\frac{\partial y}{\partial t} \mathbf{j}+\frac{\partial z}{\partial t} \mathbf{k}
$$

The standard normal vector is

$$
\mathbf{N}=\mathbf{T}_{s} \times \mathbf{T}_{t}
$$

Tangent and normal vectors

Example

The equation $z^{2}=x^{2}+y^{2}$ defines a cone in \mathbb{R}^{3}.
It can be parameterized by

$$
\mathbf{X}=s(\cos t) \mathbf{i}+s(\sin t) \mathbf{j}+s \mathbf{k}
$$

with t varying from 0 to 2π. We have

$$
\mathbf{T}_{s}=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+\mathbf{k} \text { and } \mathbf{T}_{t}=-s(\sin t) \mathbf{i}+s(\cos t) \mathbf{j}
$$

Therefore,

$$
\begin{aligned}
\mathbf{N}=\mathbf{T}_{s} \times \mathbf{T}_{t} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos t & \sin t & 1 \\
-s \sin t & s \cos t & 0
\end{array}\right| \\
& =-s(\cos t) \mathbf{i}-s(\sin t) \mathbf{j}+s \mathbf{k}
\end{aligned}
$$

Definition

We say that a parameterized surface is smooth if the parameterization is C^{1} and if it has a nonzero normal vector at every point.

Definition
Let \mathbf{X} be a parameterized surface smooth at the point $\mathbf{X}\left(s_{0}, t_{0}\right)$. The tangent plane to the surface parameterized by \mathbf{X} is the plane that passes through $\mathbf{X}\left(s_{0}, t_{0}\right)$ and has normal vector $\mathbf{N}\left(s_{0}, t_{0}\right)$. It is given by the equation

$$
\mathbf{N}\left(s_{0}, t_{0}\right) \cdot\left(\mathbf{x}-\mathbf{X}\left(s_{0}, t_{0}\right)\right)=0
$$

If $\mathbf{X}\left(s_{0}, t_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{N}\left(s_{0}, t_{0}\right)=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ then the equation can also be written

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

Example

Recall the parameterized cone

$$
\mathbf{X}(s, t)=s(\cos t) \mathbf{i}+s(\sin t) \mathbf{j}+s \mathbf{k}
$$

from the previous example. At the point $(0,1,1)=\mathbf{X}\left(1, \frac{\pi}{2}\right)$, our previous calculation gives us

$$
\mathbf{T}_{s}=(0,1,1), \mathbf{T}_{t}=(-1,0,0), \text { and } \mathbf{N}=(0,-1,1)
$$

Hence, the equation for the tangent plane is

$$
0(x-0)-1(y-1)+1(z-1)=0
$$

which simplifies to

$$
z=y
$$

