Grad, Div,

 CurlGradient
Divergence
Curl
How they're related

Math 114 Review

Math 240 - Calculus III

Summer 2013, Session II

Monday, July 1, 2013

Grad, Div,

Curl

1. Gradient, Divergence, and Curl

Gradient
Divergence
Curl
How they're related
2. Line integrals

Scalar line integrals
Vector line integrals
Conservative vector fields

Gradient

Grad, Div,

Definition

Let $f: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable scalar function on a region of 3-dimensional space. The gradient of f is the vector field

$$
\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

The direction of the gradient, $\frac{\nabla f}{\|\nabla f\|}$, is the direction in which f is increasing the fastest. The norm, $\|\nabla f\|$, is the rate of this increase.

Example
If $f(x, y, z)=x^{2}+y^{2}+z^{2}$ then

$$
\nabla f=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}
$$

Grad, Div,

Definition

Let $\mathbf{F}: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a differentiable vector field with components $\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}$. The divergence of \mathbf{F} is the scalar function

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}
$$

The divergence of a vector field measures how much it is "expanding" at each point.

Examples

1. If $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$ then $\nabla \cdot \mathbf{F}=2$.
2. If $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}$ then $\nabla \cdot \mathbf{F}=0$.

Grad, Div,

$$
\begin{aligned}
& \operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \\
& =\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \mathbf{i}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \mathbf{j}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \mathbf{k} .
\end{aligned}
$$

The magnitude of the curl, $\|\nabla \times \mathbf{F}\|$, measures how much \mathbf{F} rotates around a point. The direction of the curl, $\frac{\nabla \times \mathbf{F}}{\|\nabla \times \mathbf{F}\|}$, is the axis around which it rotates.

Grad, Div,
 Curl

Gradient
Divergence
Curl
How they're related

```
Line integrals
```

Scalar line integrals Vector line integrals
Conservative
fields

Grad, Div,

Theorem
Let $f: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a C^{2} scalar function. Then
$\nabla \times(\nabla f)=0$, that is, curl $(\operatorname{grad} f)=0$.
Theorem
Let $\mathbf{F}: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a C^{2} vector field. Then
$\nabla \cdot(\nabla \times \mathbf{F})=0$, that is, $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$.

To summarize, the composition of any two consecutive arrows in the diagram yields zero.

Scalar line integrals

Grad, Div,

Definition

Let $\mathbf{x}:[a, b] \rightarrow X \subseteq \mathbb{R}^{3}$ be a C^{1} path and $f: X \rightarrow \mathbb{R}^{3}$ a continuous function. The scalar line integral of f along \mathbf{x} is

$$
\int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

In two dimensions, a scalar line integral measures the area under a curve with base \mathbf{x} and height given by f.

Scalar line integrals

Grad, Div,

Curl

Example

Let $\mathbf{x}:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ be the helix $\mathbf{x}(t)=(\cos t, \sin t, t)$ and let $f(x, y, z)=x y+z$. Let's compute

$$
\int_{\mathbf{x}} f d s=\int_{0}^{2 \pi} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

We find

$$
\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{\sin ^{2} t+\cos ^{2} t+1}=\sqrt{2}
$$

so now

$$
\begin{aligned}
\int_{0}^{2 \pi} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t & =\int_{0}^{2 \pi}(\cos t \sin t+t) \sqrt{2} d t \\
& =\sqrt{2} \int_{0}^{2 \pi}\left(\frac{1}{2} \sin 2 t+t\right) d t=2 \sqrt{2} \pi^{2}
\end{aligned}
$$

Vector line integrals

Grad, Div,

Definition
Let $\mathbf{x}:[a, b] \rightarrow X \subseteq \mathbb{R}^{3}$ be a C^{1} path and $\mathbf{F}: X \rightarrow \mathbb{R}^{3}$ a continuous vector field. The vector line integral of \mathbf{F} along \mathbf{x} is

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t
$$

If \mathbf{F} has components $\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}$, the vector line integral can also be written

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}} F_{x} d x+F_{y} d y+F_{z} d z
$$

Physically, a vector line integral measures the work done by the force field \mathbf{F} on a particle moving along the path \mathbf{x}.

Vector line integrals

Grad, Div,

Example

Let $\mathbf{x}:[0,1] \rightarrow \mathbb{R}^{3}$ be the path $\mathbf{x}(t)=(2 t+1, t, 3 t-1)$ and let $\mathbf{F}=-z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$. Let's compute

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}}-z d x+x d y+y d z
$$

First, we find $\mathbf{x}^{\prime}(t)=(2,1,3)$, and now we can do

$$
\begin{aligned}
\int_{\mathbf{x}}-z d x+x d y+y d z & =\int_{0}^{1}-(3 t-1)(2)+(2 t+1)+t(3) d t \\
& =\int_{0}^{1}-t+3 d t=\frac{5}{2}
\end{aligned}
$$

Changing orientation

Grad, Div,

Curl
Gradient
Divergence
Curl
How they're related

Line integrals

Figure: \mathbf{x} and \mathbf{y} have opposite orientations

$$
\begin{aligned}
\int_{\mathbf{y}} f d s & =\int_{\mathbf{x}} f d s \\
\int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s} & =-\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}
\end{aligned}
$$

This can be achieved by negating t :

$$
\mathbf{y}(t)=\mathbf{x}(-t)
$$

Conservative vector fields

Grad, Div,

Definition

A continuous vector field \mathbf{F} is called a conservative vector field, or a gradient field, if $\mathbf{F}=\nabla f$ for some C^{1} scalar function f. In this case we also say that f is a scalar potential of \mathbf{F}.

Theorem

Suppose \mathbf{F} is a continuous vector field defined on a connected, open region $R \subseteq \mathbb{R}^{3}$. Then $\mathbf{F}=\nabla f$ if and only if \mathbf{F} has path independent line integrals in R.

Path independence

Grad, Div,

We say $\mathbf{F}: R \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has path independent line integrals if any of the following hold:

1. $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}$ whenever \mathbf{x} and \mathbf{y} are two simple C^{1} paths in R with the same initial and terminal points,
2. $\oint_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=0$ for any simple, closed C^{1} path \mathbf{x} lying in R (meaning the initial and terminal points of x coincide),
3. $\int_{C} \mathbf{F} \cdot d \mathbf{s}=f(B)-f(A)$ for any differentiable curve C in R running from point A to point B, and for any scalar potential f.

Physical interpretation

To justify our terminology, if f is a scalar potential for the vector field \mathbf{F}, it means that we can interpret f as measuring the potential energy associated with the force represented by \mathbf{F}.

In this setting, criterion 3 from the previous slide says that work $=\int_{C} \mathbf{F} \cdot d \mathbf{s}=f(B)-f(A)=$ change in potential energy, meaning that the force represented by \mathbf{F} obeys conservation of energy.

Theorem

Suppose \mathbf{F} is a C^{1} vector field defined in a simply-connected region, R, (intuitively, R has no holes going all the way through). Then $\mathbf{F}=\nabla f$ for some C^{2} scalar function if and only if $\nabla \times \mathbf{F}=\mathbf{0}$ at all points in R.

Example

Let

$$
\mathbf{F}=\left(\frac{x}{x^{2}+y^{2}+z^{2}}-6 x\right) \mathbf{i}+\frac{y}{x^{2}+y^{2}+z^{2}} \mathbf{j}+\frac{z}{x^{2}+y^{2}+z^{2}} \mathbf{k}
$$

\mathbf{F} is C^{1} on $\mathbb{R}^{3}-\{(0,0,0)\}$, which is a simply-connected domain. Check that

$$
\nabla \times \mathbf{F}=\mathbf{0}
$$

everywhere \mathbf{F} is defined. Therefore, \mathbf{F} is conservative.

