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Gradient

Definition
Let f : X ⊆ R3 → R be a differentiable scalar function on a
region of 3-dimensional space. The gradient of f is the vector
field

grad f = ∇f =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

The direction of the gradient, ∇f
‖∇f‖ , is the direction in which f

is increasing the fastest. The norm, ‖∇f‖, is the rate of this
increase.

Example

If f(x, y, z) = x2 + y2 + z2 then

∇f = 2x i+ 2y j+ 2z k.
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Divergence

Definition
Let F : X ⊆ R3 → R3 be a differentiable vector field with
components F = Fxi+ Fyj+ Fzk. The divergence of F is the
scalar function

divF = ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

.

The divergence of a vector field measures how much it is
“expanding” at each point.

Examples

1. If F = x i+ y j then ∇ · F = 2.

2. If F = −y i+ x j then ∇ · F = 0.
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Curl

Definition
Let F : X ⊆ R3 → R3 be a differentiable vector field with
components F = Fxi+ Fyj+ Fzk. The curl of F is the vector
field

curlF = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
=

(
∂Fz
∂y
− ∂Fy

∂z

)
i+

(
∂Fx
∂z
− ∂Fz

∂x

)
j+

(
∂Fy
∂x
− ∂Fx

∂y

)
k.

The magnitude of the curl, ‖∇ × F‖, measures how much F
rotates around a point. The direction of the curl, ∇×F

‖∇×F‖ , is the
axis around which it rotates.
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Example

If F = −y i+ x j then ∇× F = 2k.
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How they’re related

Theorem
Let f : X ⊆ R3 → R be a C2 scalar function. Then
∇× (∇f) = 0, that is, curl (grad f) = 0.

Theorem
Let F : X ⊆ R3 → R3 be a C2 vector field. Then
∇ · (∇× F) = 0, that is, div (curlF) = 0.

To summarize, the composition of any two consecutive arrows
in the diagram yields zero.

scalar
functions

grad //

0

$$
vector
fields

curl //

0

99
vector
fields

div // scalar
functions
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Scalar line integrals

Definition
Let x : [a, b]→ X ⊆ R3 be a C1 path and f : X → R3 a
continuous function. The scalar line integral of f along x is∫

x
f ds =

∫ b

a
f(x(t))

∥∥x′(t)∥∥ dt.

In two dimensions, a scalar
line integral measures the area
under a curve with base x and
height given by f .
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Scalar line integrals

Example

Let x : [0, 2π]→ R3 be the helix x(t) = (cos t, sin t, t) and let
f(x, y, z) = xy + z. Let’s compute∫

x
f ds =

∫ 2π

0
f(x(t))

∥∥x′(t)∥∥ dt.
We find ∥∥x′(t)∥∥ =

√
sin2 t+ cos2 t+ 1 =

√
2,

so now∫ 2π

0
f(x(t))

∥∥x′(t)∥∥ dt = ∫ 2π

0
(cos t sin t+ t)

√
2 dt

=
√
2

∫ 2π

0

(
1
2 sin 2t+ t

)
dt = 2

√
2π2.
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Vector line integrals

Definition
Let x : [a, b]→ X ⊆ R3 be a C1 path and F : X → R3 a
continuous vector field. The vector line integral of F along x
is ∫

x
F · ds =

∫ b

a
F(x(t)) · x′(t) dt.

If F has components F = Fxi+ Fyj+ Fzk, the vector line
integral can also be written∫

x
F · ds =

∫
x
Fxdx+ Fydy + Fzdz.

Physically, a vector line integral measures the work done by the
force field F on a particle moving along the path x.
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Vector line integrals

Example

Let x : [0, 1]→ R3 be the path x(t) = (2t+ 1, t, 3t− 1) and
let F = −z i+ x j+ y k. Let’s compute∫

x
F · ds =

∫
x
−zdx+ xdy + ydz.

First, we find x′(t) = (2, 1, 3), and now we can do∫
x
−zdx+ xdy + ydz =

∫ 1

0
−(3t− 1)(2) + (2t+ 1) + t(3)dt

=

∫ 1

0
−t+ 3dt = 5

2 .
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6.1 Scalar and Vector Line Integrals 417

EXAMPLE 7 If x: [a, b] → Rn is any C1 path, then we may define the opposite
path xopp: [a, b] → Rn by

xopp(t) = x(a + b − t).

(See Figure 6.8.) That is, xopp(t) = x(u(t)), where u: [a, b] → [a, b] is given by
u(t) = a + b − t . Clearly, then, xopp is an orientation-reversing reparametrization
of x. ◆

x(a)

x(b)

xopp(b)

xopp(a)

Figure 6.8 A path and its
opposite. In addition to reversing orientation, a reparametrization of a path can change

the speed. This follows readily from the chain rule: If y = x ◦ u, then

y′(t) = d

dt
(x(u(t))) = x′(u(t)) u′(t). (4)

So the velocity vector of the reparametrization y is just a scalar multiple (namely,
u′(t)) of the velocity vector of x. In particular, we have

Speed of y = ∥∥y′(t)
∥∥ = ∥∥u′(t) x′(u(t))

∥∥
= ∣∣u′(t)

∣∣ ∥∥x′(u(t))
∥∥ = ∣∣u′(t)

∣∣ · (speed of x). (5)

Since u is one-one, it follows that either u′(t) ≥ 0 for all t ∈ [a, b] or u′(t) ≤ 0
for all t ∈ [a, b]. The first case occurs precisely when y is orientation-preserving
and the second when y is orientation-reversing.

How does the line integral of a function or a vector field along a path differ
from the line integral (of the same function or vector field) along a reparametriza-
tion of a path? Not much at all. The precise results are stated in Theorems 1.4
and 1.5.

THEOREM 1.4 Let x: [a, b] → Rn be a piecewise C1 path and let f : X ⊆
Rn → R be a continuous function whose domain X contains the image of x.
If y: [c, d] → Rn is any reparametrization of x, then∫

y
f ds =

∫
x

f ds.

PROOF We will explicitly prove the result in the case where x (and, therefore, y)
is of class C1. (When x is only piecewise C1, we can always break up the integral
appropriately.) In the C1 case, we have, by Definition 1.1 and the observations in
equation (5), that∫

y
f ds =

∫ d

c
f (y(t))

∥∥y′(t)
∥∥ dt =

∫ d

c
f (x(u(t)))

∥∥x′(u(t))
∥∥ ∣∣u′(t)

∣∣ dt.

If y is orientation-preserving, then u(c) = a, u(d) = b, and
∣∣u′(t)

∣∣ = u′(t). Thus,
using substitution of variables,∫ d

c
f (x(u(t)))

∥∥x′(u(t))
∥∥ ∣∣u′(t)

∣∣ dt =
∫ d

c
f (x(u(t)))

∥∥x′(u(t))
∥∥ u′(t) dt

=
∫ b

a
f (x(u))

∥∥x′(u)
∥∥ du =

∫
x

f ds.

x
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y

Figure: x and y have opposite orientations∫
y
f ds =

∫
x
f ds∫

y
F · ds = −

∫
x
F · ds

This can be achieved by negating t:

y(t) = x(−t).
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Conservative vector fields

Definition
A continuous vector field F is called a conservative vector
field, or a gradient field, if F = ∇f for some C1 scalar
function f . In this case we also say that f is a scalar
potential of F.

Theorem
Suppose F is a continuous vector field defined on a connected,
open region R ⊆ R3. Then F = ∇f if and only if F has path
independent line integrals in R.
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Path independence

We say F : R ⊆ R3 → R3 has path independent line
integrals if any of the following hold:

1.

∫
x
F · ds =

∫
y
F · ds whenever x and y are two simple C1

paths in R with the same initial and terminal points,

2.

∮
x
F · ds = 0 for any simple, closed C1 path x lying in R

(meaning the initial and terminal points of x coincide),

3.

∫
C
F · ds = f(B)− f(A) for any differentiable curve C in

R running from point A to point B, and for any scalar
potential f .
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Physical interpretation

To justify our terminology, if f is a scalar potential for the
vector field F, it means that we can interpret f as measuring
the potential energy associated with the force represented by F.

In this setting, criterion 3 from the previous slide says that

work =

∫
C
F · ds = f(B)− f(A) = change in potential energy,

meaning that the force represented by F obeys conservation of
energy.
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A test for conservative fields

Theorem
Suppose F is a C1 vector field defined in a simply-connected
region, R, (intuitively, R has no holes going all the way
through). Then F = ∇f for some C2 scalar function if and
only if ∇× F = 0 at all points in R.

Example

Let

F =
(

x
x2+y2+z2

− 6x
)
i+ y

x2+y2+z2
j+ z

x2+y2+z2
k.

F is C1 on R3 − {(0, 0, 0)}, which is a simply-connected
domain. Check that

∇× F = 0

everywhere F is defined. Therefore, F is conservative.
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