Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

- Scalar line integrals Vector line integrals Conservative
- Conservati fields

Math 114 Review

Math 240 — Calculus III

Summer 2013, Session II

Monday, July 1, 2013

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

- Scalar line integrals Vector line integrals Conservative
- Gradient, Divergence, and Curl Gradient Divergence Curl How they're related

Agenda

2. Line integrals Scalar line integrals Vector line integrals Conservative vector fields

Math 240

Grad, Div, Curl

Gradient

Divergence Curl How they're related

Line integrals

Scalar line integrals Vector line integrals Conservative

Definition Let $f: X \subseteq \mathbb{R}^3 \to \mathbb{R}$ be a differ

Let $f: X \subseteq \mathbb{R}^3 \to \mathbb{R}$ be a differentiable scalar function on a region of 3-dimensional space. The **gradient** of f is the vector field

Gradient

grad
$$f = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}.$$

The direction of the gradient, $\frac{\nabla f}{\|\nabla f\|}$, is the direction in which f is increasing the fastest. The norm, $\|\nabla f\|$, is the rate of this increase.

Example

If
$$f(x, y, z) = x^2 + y^2 + z^2$$
 then

 $\nabla f = 2x \,\mathbf{i} + 2y \,\mathbf{j} + 2z \,\mathbf{k}.$

Math 240

Grad, Div, Curl

Gradient

Divergence Curl

How they're related

Line integrals

Scalar line integrals Vector line integrals Conservative

Definition

Let $\mathbf{F} : X \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ be a differentiable vector field with components $\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$. The **divergence** of \mathbf{F} is the scalar function

Divergence

div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

The divergence of a vector field measures how much it is "expanding" at each point.

Examples

- 1. If $\mathbf{F} = x \mathbf{i} + y \mathbf{j}$ then $\nabla \cdot \mathbf{F} = 2$.
- 2. If $\mathbf{F} = -y \mathbf{i} + x \mathbf{j}$ then $\nabla \cdot \mathbf{F} = 0$.

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're

Line integrals

Scalar line integrals Vector line integrals Conservative

Definition

Let $\mathbf{F} : X \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ be a differentiable vector field with components $\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$. The **curl** of \mathbf{F} is the vector field

Curl

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$
$$= \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \mathbf{k}.$$

The magnitude of the curl, $\|\nabla \times \mathbf{F}\|$, measures how much \mathbf{F} rotates around a point. The direction of the curl, $\frac{\nabla \times \mathbf{F}}{\|\nabla \times \mathbf{F}\|}$, is the axis around which it rotates.

Math 240

Grad, Div, Curl

Gradient Divergence **Curl** How they're

Line integrals

Scalar line integrals Vector line integrals Example

If
$$\mathbf{F} = -y\,\mathbf{i} + x\,\mathbf{j}$$
 then $abla imes \mathbf{F} = 2\,\mathbf{k}$.

Curl

How they're related

Math 114 Review

Math 240

Grad, Div, Curl Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals Vector line integrals Conservative

Theorem Let $f : X \subseteq \mathbb{R}^3 \to \mathbb{R}$ be a C^2 scalar function. Then $\nabla \times (\nabla f) = 0$, that is, $\operatorname{curl}(\operatorname{grad} f) = 0$.

Theorem

Let $\mathbf{F} : X \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ be a C^2 vector field. Then $\nabla \cdot (\nabla \times \mathbf{F}) = 0$, that is, $\operatorname{div} (\operatorname{curl} \mathbf{F}) = 0$.

To summarize, the composition of any two consecutive arrows in the diagram yields zero.

Scalar line integrals

Definition

Let $\mathbf{x}: [a,b] \to X \subseteq \mathbb{R}^3$ be a C^1 path and $f: X \to \mathbb{R}^3$ a continuous function. The scalar line integral of f along \mathbf{x} is

$$\int_{\mathbf{x}} f \, ds = \int_{a}^{b} f(\mathbf{x}(t)) \left\| \mathbf{x}'(t) \right\| \, dt.$$

In two dimensions, a scalar line integral measures the area under a curve with base x and height given by f.

Math 114

Review Math 240 Grad. Div.

Scalar line integrals Vector line integrals Conservative

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals

Vector line integrals

Conservative fields

Example

Let $\mathbf{x}: [0, 2\pi] \to \mathbb{R}^3$ be the helix $\mathbf{x}(t) = (\cos t, \sin t, t)$ and let f(x, y, z) = xy + z. Let's compute

$$\int_{\mathbf{x}} f \, ds = \int_0^{2\pi} f(\mathbf{x}(t)) \left\| \mathbf{x}'(t) \right\| \, dt.$$

We find

$$\|\mathbf{x}'(t)\| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2},$$

so now

$$\int_{0}^{2\pi} f(\mathbf{x}(t)) \left\| \mathbf{x}'(t) \right\| dt = \int_{0}^{2\pi} (\cos t \sin t + t) \sqrt{2} dt$$
$$= \sqrt{2} \int_{0}^{2\pi} (\frac{1}{2} \sin 2t + t) dt = 2\sqrt{2}\pi^{2}.$$

Scalar line integrals

Vector line integrals

Definition

Let $\mathbf{x} : [a, b] \to X \subseteq \mathbb{R}^3$ be a C^1 path and $\mathbf{F} : X \to \mathbb{R}^3$ a continuous vector field. The **vector line integral** of \mathbf{F} along \mathbf{x} is

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt.$$

If F has components $F = F_x i + F_y j + F_z k$, the vector line integral can also be written

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} F_x dx + F_y dy + F_z dz.$$

Physically, a vector line integral measures the work done by the force field ${\bf F}$ on a particle moving along the path ${\bf x}.$

Math 114 Review

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals

Vector line integrals

Conservative fields

Vector line integrals

Math 114 Review

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals

Vector line integrals

Conservative fields

Example

Let $\mathbf{x} : [0,1] \to \mathbb{R}^3$ be the path $\mathbf{x}(t) = (2t+1,t,3t-1)$ and let $\mathbf{F} = -z \mathbf{i} + x \mathbf{j} + y \mathbf{k}$. Let's compute

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} -zdx + xdy + ydz.$$

First, we find $\mathbf{x}'(t)=(2,1,3)\text{,}$ and now we can do

$$\int_{\mathbf{x}} -zdx + xdy + ydz = \int_{0}^{1} -(3t-1)(2) + (2t+1) + t(3)dt$$
$$= \int_{0}^{1} -t + 3dt = \frac{5}{2}.$$

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals

Vector line integrals

Conservative fields

Changing orientation

Figure: $\mathbf x$ and $\mathbf y$ have opposite orientations

$$\int_{\mathbf{y}} f \, ds = \int_{\mathbf{x}} f \, ds$$
$$\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$$

This can be achieved by negating *t*:

 $\mathbf{y}(t) = \mathbf{x}(-t).$

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals Vector line integrals

Conservative fields

Definition

A continuous vector field \mathbf{F} is called a **conservative vector** field, or a gradient field, if $\mathbf{F} = \nabla f$ for some C^1 scalar function f. In this case we also say that f is a scalar potential of \mathbf{F} .

Theorem

Suppose \mathbf{F} is a continuous vector field defined on a connected, open region $R \subseteq \mathbb{R}^3$. Then $\mathbf{F} = \nabla f$ if and only if \mathbf{F} has path independent line integrals in R.

Conservative vector fields

Path independence

Math 114 Review

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals Vector line integrals

Conservative fields

We say $\mathbf{F}: R \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ has path independent line integrals if any of the following hold:

- 1. $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s}$ whenever \mathbf{x} and \mathbf{y} are two simple C^{1} paths in R with the same initial and terminal points,
- 2. $\oint_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = 0 \text{ for any simple, } closed C^1 \text{ path } \mathbf{x} \text{ lying in } R$ (meaning the initial and terminal points of \mathbf{x} coincide),
- 3. $\int_{C} \mathbf{F} \cdot d\mathbf{s} = f(B) f(A) \text{ for any differentiable curve } C \text{ in } R \text{ running from point } A \text{ to point } B, \text{ and for any scalar potential } f.$

Physical interpretation

Review Math 240

Math 114

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals Vector line integrals

Conservative fields To justify our terminology, if f is a scalar potential for the vector field \mathbf{F} , it means that we can interpret f as measuring the *potential* energy associated with the force represented by \mathbf{F} .

In this setting, criterion 3 from the previous slide says that

work = $\int_C \mathbf{F} \cdot d\mathbf{s} = f(B) - f(A)$ = change in potential energy,

meaning that the force represented by ${\bf F}$ obeys conservation of energy.

Math 240

Grad, Div, Curl

Gradient Divergence Curl How they're related

Line integrals

Scalar line integrals Vector line integrals

Conservative fields

A test for conservative fields

Theorem

Suppose \mathbf{F} is a C^1 vector field defined in a simply-connected region, R, (intuitively, R has no holes going all the way through). Then $\mathbf{F} = \nabla f$ for some C^2 scalar function if and only if $\nabla \times \mathbf{F} = \mathbf{0}$ at all points in R.

Example

Let

$$\mathbf{F} = \left(\frac{x}{x^2 + y^2 + z^2} - 6x\right)\mathbf{i} + \frac{y}{x^2 + y^2 + z^2}\mathbf{j} + \frac{z}{x^2 + y^2 + z^2}\mathbf{k}.$$

 ${\bf F}$ is C^1 on $\mathbb{R}^3-\{(0,0,0)\},$ which is a simply-connected domain. Check that

$$abla imes \mathbf{F} = \mathbf{0}$$

everywhere ${\bf F}$ is defined. Therefore, ${\bf F}$ is conservative.