Final Exam Practice Problems

Math 240 - Calculus III
Summer 2013, Session II

Vector Calculus

1. Which of the following statements are true for all C^{2} scalar functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and vector fields $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$?
(a) $\nabla \cdot(\nabla f)=0$
(b) $\nabla \times(\nabla f)=\mathbf{0}$
(c) $\nabla \cdot(\nabla \times \mathbf{F})=0$

Answer: Statements (b) and (c) are true.
2. Calculate the arc length of the given curve in \mathbb{R}^{3}.
(a) $\mathbf{x}(t)=(3 \cos 2 t, 3 \sin 2 t, 3 t)$ for $0 \leq t \leq \frac{\pi}{2}$

Answer: $\frac{3}{2} \pi \sqrt{5}$
(b) $\mathbf{x}(t)=\left(\left(t^{2}+1\right) \cos t,\left(t^{2}+1\right) \sin t, 2 \sqrt{2} t\right)$ for $0 \leq t \leq 1$

Answer: $\frac{10}{3}$
3. Compute the gradient of the given function.
(a) $f(x, y, z)=x^{2} e^{y z}$

Answer: $2 x e^{y z} \mathbf{i}+x^{2} z e^{y z} \mathbf{j}+x^{2} y e^{y z} \mathbf{k}$
(b) $\ln (x y)+y \sin z$

Answer: $x^{-1} \mathbf{i}+\left(y^{-1}+\sin z\right) \mathbf{j}+y \cos z \mathbf{k}$
4. Find the equation of the tangent plane to the surface $z=f(x, y)$ at the point P.
(a) $f(x, y)=x e^{y}, P=(-1,0,1)$

Answer: $z=x-y+2$
(b) $f(x, y)=\sqrt{x^{2}+y^{2}}, P=(3,4,5)$

Answer: $3 x+4 y-5 z=0$
5. Find the equation of the tangent plane to the given surface at the point P.
(a) $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}=1, P=\left(1,2, \frac{2 \sqrt{11}}{3}\right)$

Answer: $\frac{1}{2} x+\frac{4}{9} y+\frac{1}{12} \sqrt{11} z=2$
(b) $x \sin z=y \cos z, P=\left(0,1, \frac{\pi}{2}\right)$

Answer: $x+z=\frac{\pi}{2}$
6. Calculate $\int_{C} f d s$ for the given function f and curve C.
(a) $f(x, y)=\frac{x y}{x^{2}+1}$ and C is the curve parameterized by $\mathbf{x}(t)=(t, 3)$ for $0 \leq t \leq 2$

Answer: $\frac{3}{2} \ln 5$
(b) $f(x, y)=x^{2}+y$ and C is the path from $(2,0)$ counterclockwise along the circle $x^{2}+y^{2}=$ 4 to the point $(-2,0)$ and then back to $(2,0)$ along the x-axis
Answer: $4 \pi+\frac{34}{3}$
(c) $f(x, y, z)=x y z$ and C is the straight line from $(1,0,2)$ to $(-3,2,1)$

Answer: $-2 \sqrt{21}$
7. Find the lateral surface area of the part of the cylinder $x^{2}+y^{2}=4$ below the plane $x+2 y+z=$ 6 and above the $x y$-plane.
Answer: 24π
8. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ for the given vector field \mathbf{F} and curve C.
(a) $\mathbf{F}(x, y)=y \mathbf{i}-x \mathbf{j}$ and C is the circle centered at the origin with radius 1 , oriented clockwise.
Answer: 2π
(b) $\mathbf{F}(x, y)=\left(x^{2} y-\frac{1}{2} y\right) \mathbf{i}+\left(2 x+x y^{2}\right) \mathbf{j}$ and C is the path parameterized by $\mathbf{x}(t)=$ $(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$
Answer: $\frac{5}{2} \pi$ (Hint: use an indirect method.)
(c) $\mathbf{F}(x, y)=x y^{2} \mathbf{i}+x y^{3} \mathbf{j}$ and C is the triangular path from $(0,0)$ to $(1,0)$ to $(0,1)$ and back to $(0,0)$.
Answer: $-\frac{1}{30}$
(d) $\mathbf{F}(x, y)=\left(x^{2}+y^{2}\right) \mathbf{i}+2 x y \mathbf{j}$ and C is parameterized by $\mathbf{x}(t)=(\cos t, \sin t+\sin 3 t)$ for $0 \leq t \leq \pi$.
Answer: $-\frac{2}{3}$ (Hint: indirect method for this one too.)
(e) $\mathbf{F}=x y \mathbf{i}+2 z \mathbf{j}+3 y \mathbf{k}$ and C is the intersection of the cylinder $x^{2}+y^{2}=9$ with the plane $x+z=5$, oriented counterclockwise from above
Answer: 9π
9. Find a scalar potential for the given vector field, or show that none exists.
(a) $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$

Answer: This vector field is not conservative. $\nabla \times \mathbf{F}=-2 \mathbf{k}$.
(b) $\mathbf{F}=x \mathbf{i}-y \mathbf{j}$

Answer: $\mathbf{F}=\nabla\left(\frac{1}{2} x^{2}-\frac{1}{2} y^{2}\right)$
(c) $\mathbf{F}=x^{2} z^{2} \mathbf{i}+5 y \mathbf{j}+x^{3} z \mathbf{k}$

Answer: \mathbf{F} is not conservative. $\nabla \times \mathbf{F}=-x^{2} z \mathbf{j}$.
(d) $\mathbf{F}=3 x^{2} z \mathbf{i}-\ln z \mathbf{j}+\left(x^{3}-\frac{y}{z}\right) \mathbf{k}$

Answer: $\mathbf{F}=\nabla\left(x^{3} z-y \ln z\right)$
10. Evaluate the given surface integral.
(a) $\int_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=x \mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}$ and S is the sphere $x^{2}+y^{2}+z^{2}=9$ with outwardpointing normal
Answer: 216π
(b) $\int_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=z \mathbf{i}+2 x \mathbf{j}+3 y \mathbf{k}$ and S is the upper hemisphere $(z \geq 0)$ of $x^{2}+y^{2}+z^{2}=9$ with upward-pointing normal
Answer: 18π
(c) $\int_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=\left(x^{2}+z\right) \mathbf{i}-\frac{1}{3} y^{3} \mathbf{j}+\left(2 x+\frac{1}{2} z^{2}\right) \mathbf{k}$ and S is the surface of the cube $[0,1]^{3}$ with outward-pointing normal
Answer: $\frac{7}{3}$
(d) $\int_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=y \mathbf{i}+x z \mathbf{j}+\mathbf{k}$ and S is the surface of the cone $z=1-\sqrt{x^{2}+y^{2}}$ between $z=0$ and $z=1$ with normal vector pointing away from the z-axis
Answer: $-\pi$

Linear Algebra

1. Find the solution set of the given linear system.
(a) $\begin{aligned}-5 x_{1}-4 x_{2} & =0 \\ -8 x_{1}+x_{2} & =0\end{aligned}$

Answer: $\left\{(0,0) \in \mathbb{R}^{2}\right\}$
(b) $\begin{aligned}-x_{1}+6 x_{2}-25 x_{3} & =0 \\ 9 x_{1}+6 x_{2}-15 x_{3} & =0\end{aligned}$

Answer: $\left\{(-t, 4 t, t) \in \mathbb{R}^{3}: t \in \mathbb{R}\right\}$

$$
\text { (c) } \begin{aligned}
x_{1}-2 x_{2}+2 x_{3} & =5 \\
x_{1}-x_{2} & =-1 \\
-x_{1}+x_{2}+x_{3} & =5
\end{aligned}
$$

Answer: $\left\{(1,2,4) \in \mathbb{R}^{3}\right\}$
$x_{1}+x_{2}+3 x_{3}=3$
(d) $-x_{1}+x_{2}+x_{3}=-1$
$2 x_{1}+3 x_{2}+8 x_{3}=4$
Answer: This system is inconsistent.
$x_{1}+2 x_{2}-x_{3}+x_{4}=1$
(e) $-x_{1}-2 x_{2}+3 x_{3}+5 x_{4}=-5$
$-x_{1}-2 x_{2}-x_{3}-7 x_{4}=3$
Answer: $\left\{(-1-2 s-4 t, s,-2-3 t, t) \in \mathbb{R}^{4}: s, t \in \mathbb{R}\right\}$ (Answers may vary.)
2. Parameterize the line that is the intersection of the planes $x+y+3 z=4$ and $x+2 y+4 z=5$.

Answer: $\mathbf{x}(t)=(3-2 t, 1-t, t)$
3. Calculate the determinant of the given matrix.
(a) $\left[\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right]$

Answer: -7
(b) $\left[\begin{array}{rrr}-1 & 2 & 0 \\ 2 & -2 & 5 \\ 4 & -1 & 3\end{array}\right]$

Answer: 29
(c) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 5 & 8 \\ 1 & 1 & 2 & 3 \\ 1 & 3 & 5 & 8\end{array}\right]$

Answer: - 2
4. Determine whether the given matrix is invertible. Find its inverse if it has one.
(a) $\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$

Answer: The inverse of this matrix is $\frac{1}{2}\left[\begin{array}{rr}2 & -4 \\ -1 & 3\end{array}\right]$.
(b) $\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 5 & 2 \\ 4 & 7 & 4\end{array}\right]$

Answer: This matrix is not invertible.
(c) $\left[\begin{array}{rrr}1 & 0 & 4 \\ -1 & 1 & -1 \\ -1 & 0 & -3\end{array}\right]$

Answer: The inverse of this matrix is $\left[\begin{array}{rrr}-3 & 0 & -4 \\ -2 & 1 & -3 \\ 1 & 0 & 1\end{array}\right]$.
5. Find a basis for the subset of \mathbb{R}^{n} spanned by the given vectors.
(a) $\mathbf{v}_{1}=(1,2,1,3), \mathbf{v}_{2}=(3,6,3,9), \mathbf{v}_{3}=(1,3,5,4), \mathbf{v}_{4}=(2,3,-2,5)$

Answer: Answers may vary. Correct answers include

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\} \quad \text { and } \quad\{(1,2,1,3),(0,1,4,1)\} .
$$

(b) $\mathbf{v}_{1}=(1,1,1,1,1), \mathbf{v}_{2}=(1,1,2,4,1), \mathbf{v}_{3}=(0,0,1,3,0), \mathbf{v}_{4}=(0,0,1,4,0)$

Answer: Answers may vary. Correct answers include

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\} \quad \text { and } \quad\{(1,1,1,1,1),(0,0,1,3,0),(0,0,0,1,0)\} .
$$

6. Let $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,2)$. Verify that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for \mathbb{R}^{2} and express $(2,-1)$ in this basis.
Answer: One method of verification is to compute

$$
\operatorname{det}\left(\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]\right)=\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|=1
$$

and note that it is nonzero. Then

$$
(2,-1)=5 \mathbf{v}_{1}-3 \mathbf{v}_{2} .
$$

7. Determine a basis for the kernel and range of the linear transformation $T(\mathbf{v})=A \mathbf{v}$ where

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
-2 & 1 & -5 \\
3 & -2 & 8
\end{array}\right]
$$

Answer: A basis for $\operatorname{Ker}(T)$ is $\{(-2,1,1)\}$. A basis for $\operatorname{Rng}(T)$ is $\{(1,-2,3),(0,1,-2)\}$. (Answers may vary.)
8. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(a, b)=(a-2 b, 3 a)$. Find the matrix representation of T relative to the given ordered basis.
(a) the standard basis $\{(1,0),(0,1)\}$

Answer: $\left[\begin{array}{rr}1 & -2 \\ 3 & 0\end{array}\right]$
(b) $\{(1,2),(1,3)\}$

Answer: $\left[\begin{array}{rr}-12 & -18 \\ 9 & 13\end{array}\right]$
9. Let V be the subspace of $C^{\infty}(\mathbb{R})$ spanned by $y_{1}=e^{2 x} \cos x$ and $y_{2}=e^{2 x} \sin x$. Find the matrix representation of the linear transformation $T: V \rightarrow V$ given by $T(f)=f^{\prime}+3 f$ relative to the ordered basis $\left\{y_{1}, y_{2}\right\}$.
Answer: $\left[\begin{array}{cc}5 & 1 \\ -1 & 5\end{array}\right]$
10. Determine whether the statement is true or false.
(a) The set of invertible $n \times n$ matrices is a subspace of $M_{n}(\mathbb{R})$.

Answer: False.
(b) The set $\left\{(a, b, 0, a) \in \mathbb{R}^{4}: a, b \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{4}.

Answer: True.
(c) The mapping $T: C^{2}(\mathbb{R}) \rightarrow C^{0}(\mathbb{R})$ defined by $T(f)=f^{\prime \prime}-3 f^{\prime}+5 f$ is a linear transformation.
Answer: True.
(d) If the standard basis vectors $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ are eigenvectors of an $n \times n$ matrix, then the matrix is diagonal.
Answer: True.
(e) If 1 is the only eigenvalue of an $n \times n$ matrix, then it must be the identity matrix.

Answer: False.

