## 3.1

T/F
2. F

## Problems

2. In order for $T$ to be a linear transformation, we require $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})$ and $T(c \mathbf{v})=c T(\mathbf{v})$ for all scalars $c$ and vectors $\mathbf{v}$ and $\mathbf{w}$. If $\mathbf{v}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{w}=\left(y_{1}, y_{2}, y_{3}\right)$ then

$$
\begin{aligned}
T(\mathbf{v}+\mathbf{w}) & =T\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
& =\left(\left(x_{1}+y_{1}\right)+3\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right),\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right) \\
& =\left(\left(x_{1}+3 x_{2}+x_{3}\right)+\left(y_{1}+3 y_{2}+y_{3}\right),\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right)\right) \\
& =\left(x_{1}+3 x_{2}+x_{3}, x_{1}-x_{2}\right)+\left(y_{1}+3 y_{2}+y_{3}, y_{1}-y_{2}\right) \\
& =T(\mathbf{v})+T(\mathbf{w})
\end{aligned}
$$

and

$$
\begin{aligned}
T(c \mathbf{v}) & =\left(c x_{1}+3\left(c x_{2}\right)+c x_{3}, c x_{1}-c x_{2}\right) \\
& =\left(c\left(x_{1}+3 x_{2}+x_{3}\right), c\left(x_{1}-x_{2}\right)\right) \\
& =c\left(x_{1}+3 x_{2}+x_{3}, x_{1}-x_{2}\right)=c T(\mathbf{v}) .
\end{aligned}
$$

10. This mapping $T$ satisfies neither one of our criteria for linear transformations. If $A$ and $B$ are $2 \times 2$ matrices then in general

$$
T(A+B)=\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B=T(A)+T(B)
$$

In particular, if $A$ and $B$ are the $2 \times 2$ identity matrix then we have a counterexample:

$$
\operatorname{det}(A+B)=\left|\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right|=4 \neq 2=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|+\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=\operatorname{det} A+\operatorname{det} B
$$

Additionally, scalars do not pull out like they're supposed to. If $T$ is a linear transformation then for any scalar $c$ we have $T(c A)=c T(A)$. For this $T$ we have instead $T(c A)=c^{2} T(A)$. In fact, if $A$ is the identity matrix and $c=2$ then this is the same counterexample as above.
12. The matrix for the linear transformation $T$ is

$$
\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \ldots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

In this case $n=2$. The standard basis is

$$
\begin{aligned}
& \mathbf{e}_{1}=(1,0) \\
& \mathbf{e}_{2}=(0,1)
\end{aligned}
$$

and when we apply $T$ we get

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=(1,2,1) \\
& T\left(\mathbf{e}_{2}\right)=(3,-7,0)
\end{aligned}
$$

so the matrix of $T$ is

$$
\left[\begin{array}{cc}
1 & 3 \\
2 & -7 \\
1 & 0
\end{array}\right]
$$

24. To find the matrix for $T$ we need to know what $T$ does to the standard basis $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$. We can write $\mathbf{e}_{1}$ as a linear combination of $(-1,1)$ and $(1,2)$ :

$$
\mathbf{e}_{1}=(1,0)=\frac{1}{3}(1,2)-\frac{2}{3}(-1,1)
$$

so

$$
\begin{aligned}
T\left(\mathbf{e}_{1}\right)=T(1,0) & =T\left(\frac{1}{3}(1,2)-\frac{2}{3}(-1,1)\right) \\
& =\frac{1}{3} T(1,2)-\frac{2}{3} T(-1,1) \\
& =\frac{1}{3}(-3,1,1,1)-\frac{2}{3}(1,0,-2,2) \\
& =\left(-\frac{5}{3}, \frac{1}{3}, \frac{5}{3},-1\right) .
\end{aligned}
$$

Similarly,

$$
\mathbf{e}_{2}=(0,1)=\frac{1}{3}(1,2)+\frac{1}{3}(-1,1)
$$

so

$$
\begin{aligned}
T\left(\mathbf{e}_{2}\right)=T(0,1) & =T\left(\frac{1}{3}(1,2)+\frac{1}{3}(-1,1)\right) \\
& =\frac{1}{3} T(1,2)+\frac{1}{3} T(-1,1) \\
& =\frac{1}{3}(-3,1,1,1)+\frac{1}{3}(1,0,-2,2) \\
& =\left(-\frac{2}{3}, \frac{1}{3},-\frac{1}{3}, 1\right) .
\end{aligned}
$$

Thus, the matrix for $T$ is

$$
\left[\begin{array}{cc}
-\frac{5}{3} & -\frac{2}{3} \\
\frac{1}{3} & \frac{1}{3} \\
\frac{5}{3} & -\frac{1}{3} \\
-1 & 1
\end{array}\right] .
$$

34. Let $\mathbf{v}, \mathbf{w} \in V$ and $d$ be a scalar.

$$
\begin{aligned}
\left(T_{1}+T_{2}\right)(\mathbf{v}+\mathbf{w}) & =T_{1}(\mathbf{v}+\mathbf{w})+T_{2}(\mathbf{v}+\mathbf{w}) \\
& =\left(T_{1}(\mathbf{v})+T_{1}(\mathbf{w})\right)+\left(T_{2}(\mathbf{v})+T_{2}(\mathbf{w})\right) \\
& =\left(T_{1}(\mathbf{v})+T_{2}(\mathbf{v})\right)+\left(T_{2}(\mathbf{w})+T_{2}(\mathbf{w})\right) \\
& =\left(T_{1}+T_{2}\right)(\mathbf{v})+\left(T_{1}+T_{2}\right)(\mathbf{w})
\end{aligned}
$$

and

$$
\begin{aligned}
\left(T_{1}+T_{2}\right)(d \mathbf{v}) & =T_{1}(d \mathbf{v})+T_{2}(d \mathbf{v}) \\
& =d T_{1}(\mathbf{v})+d T_{2}(\mathbf{v}) \\
& =d\left(T_{1}(\mathbf{v})+T_{2}(\mathbf{v})\right) \\
& =d\left(T_{1}+T_{2}\right)(\mathbf{v})
\end{aligned}
$$

show that $\left(T_{1}+T_{2}\right)$ is a linear transformation.

$$
\begin{aligned}
\left(c T_{1}\right)(\mathbf{v}+\mathbf{w}) & =c T_{1}(\mathbf{v}+\mathbf{w}) \\
& =c\left(T_{1}(\mathbf{v})+T_{1}(\mathbf{w})\right) \\
& =c T_{1}(\mathbf{v})+c T_{1}(\mathbf{w}) \\
& =\left(c T_{1}\right)(\mathbf{v})+\left(c T_{1}\right)(\mathbf{w})
\end{aligned}
$$

and

$$
\begin{aligned}
\left(c T_{1}\right)(d \mathbf{v}) & =c T_{1}(d \mathbf{v}) \\
& =c d T_{1}(\mathbf{v}) \\
& =d\left(c T_{1}(\mathbf{v})\right) \\
& =d\left(c T_{1}\right)(\mathbf{v})
\end{aligned}
$$

show that $c T_{1}$ is a linear transformation.
3.1

T/F
4. T
6. F

## Problems

2. Here's what the linear transformation of $A$ does to the square (" F " added to show orientation):

3. First, we use elementary row operations to reduce $A$ to the identity.

$$
\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right] \xrightarrow{P_{12}}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \xrightarrow{M_{1}\left(\frac{1}{2}\right)}\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \xrightarrow{M_{2}\left(\frac{1}{2}\right)}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

This tells us that

$$
A=P_{12}^{-1} M_{1}\left(\frac{1}{2}\right)^{-1} M_{2}\left(\frac{1}{2}\right)^{-1}=P_{12} M_{1}(2) M_{2}(2)
$$

Now we use the correspondences given in section 5.2 to read off that $A$ is first a stretch in the $y$-direction, then a stretch in the $x$-direction, and finally a reflection in the line $y=x$. (Actually, the order of the two stretches does not matter; we say that they commute with each other.)
10. Use the same method as in $\# 6$.

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \xrightarrow{A_{12}(-3)}\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right] \xrightarrow{M_{2}\left(-\frac{1}{2}\right)}\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \xrightarrow{A_{21}(-2)}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

which means that

$$
\begin{aligned}
A & =A_{12}(-3)^{-1} M_{2}\left(-\frac{1}{2}\right)^{-1} A_{21}(-2)^{-1} \\
& =A_{12}(3) M_{2}(-2) A_{21}(2) \\
& =A_{12}(3) M_{2}(2) M_{2}(-1) A_{21}(2) .
\end{aligned}
$$

So the linear transformation given by $A$ is first a shear parallel to the $x$-axis, then reflection in the $x$-axis, then a stretch in the $y$-direction, and finally a shear parallel to the $y$-axis.

