3.1

T/F

2. T

4. T

Problems

10.

$$\begin{vmatrix} -4 & 10 \\ -1 & 8 \end{vmatrix} = (-4)(8)) - (-1)(10) = -32 + 10 = -22$$

18.

$$\begin{vmatrix} 3 & 2 & 6 \\ 2 & 1 & -1 \\ -1 & 1 & 4 \end{vmatrix} = \frac{(3)(1)(4) + (2)(-1)(-1) + (6)(2)(1)}{-(-1)(1)(6) - (1)(-1)(3) - (4)(2)(2)} \\ = 12 + 2 + 12 + 6 + 3 - 16 \\ = 19 \end{vmatrix}$$

22. If

$$y_1(x) = \cos 2x,$$

 $y_2(x) = \sin 2x,$ and
 $y_3(x) = e^x$

then

$$y_1''' - y_1'' + 4y_1' - 4y_1 = 8\sin 2x + 4\cos 2x - 8\sin 2x - 4\cos 2x = 0,$$

$$y_2''' - y_2'' + 4y_2' - 4y_2 = -8\cos 2x + 4\sin 2x + 8\cos 2x - 4\sin 2x = 0, \text{ and}$$

$$y_3''' - y_3'' + 4y_3' - 4y_3 = e^x - e^x + 4e^x - 4e^x.$$

The Wronskian is

$$\begin{array}{l} y_1 \quad y_2 \quad y_3 \\ y_1' \quad y_2' \quad y_3' \\ y_1'' \quad y_2'' \quad y_3'' \\ \end{array} = \begin{vmatrix} \cos 2x & \sin 2x & e^x \\ -2\sin 2x & 2\cos 2x & e^x \\ -4\cos 2x & -4\sin 2x & e^x \\ \end{vmatrix} \\ = \frac{2e^x \cos^2 2x - 4e^x \sin 2x \cos 2x + 8e^x \sin^x 2x}{+8e^x \cos^2 2x + 4e^x \sin 2x \cos 2x + 2e^x \sin^2 2x} \\ = 2e^x + 8e^x. \end{array}$$

This function is positive for all real x because e^x is positive.

Permutation	Parity	Permutation	Parity
(1, 2, 3, 4)	even	(4, 3, 2, 1)	even
(1,2,4,3)	odd	(3, 4, 2, 1)	odd
(1, 4, 2, 3)	even	(3, 2, 4, 1)	even
(4, 1, 2, 3)	odd	(3, 2, 1, 4)	odd
(4, 1, 3, 2)	even	(2, 3, 1, 4)	even
(1, 4, 3, 2)	odd	(2, 3, 4, 1)	odd
(1, 3, 4, 2)	even	(2, 4, 3, 1)	even
(1, 3, 2, 4)	odd	(4, 2, 3, 1)	odd
(3, 1, 2, 4)	even	(4, 2, 1, 3)	even
(3, 1, 4, 2)	odd	(2, 4, 1, 3)	odd
(3, 4, 1, 2)	even	(2, 1, 4, 3)	even
(4, 3, 1, 2)	odd	(2, 1, 3, 4)	odd

24. (a,b) We can list the permutations in such a way that neighboring ones differ only by a transposition. This means that the parity will alternate between even and odd.

(c) The forumula for the determinant of a 4×4 matrix is

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33}a_{44} - a_{11}a_{22}a_{34}a_{43} + a_{11}a_{24}a_{32}a_{43} - a_{14}a_{21}a_{32}a_{43} \\ + a_{14}a_{21}a_{33}a_{42} - a_{11}a_{24}a_{33}a_{42} + a_{11}a_{23}a_{34}a_{42} - a_{11}a_{23}a_{32}a_{44} \\ + a_{13}a_{21}a_{32}a_{44} - a_{13}a_{21}a_{34}a_{42} + a_{13}a_{24}a_{31}a_{42} - a_{14}a_{23}a_{31}a_{42} \\ + a_{14}a_{23}a_{32}a_{41} - a_{13}a_{24}a_{32}a_{41} + a_{13}a_{22}a_{34}a_{41} - a_{13}a_{22}a_{31}a_{44} \\ + a_{12}a_{23}a_{31}a_{44} - a_{12}a_{23}a_{34}a_{41} + a_{12}a_{24}a_{33}a_{41} - a_{14}a_{22}a_{33}a_{41} \\ + a_{14}a_{22}a_{31}a_{43} - a_{12}a_{24}a_{31}a_{43} + a_{12}a_{21}a_{34}a_{43} - a_{12}a_{21}a_{33}a_{44} \\ \end{vmatrix}$$

$\mathbf{3.2}$

\mathbf{T}/\mathbf{F}

2. T

Problems

2.

$$\begin{vmatrix} 2 & -1 & 4 \\ 3 & 2 & 1 \\ -2 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 4 \\ 0 & \frac{7}{2} & -5 \\ -2 & 1 & 4 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & -1 & 4 \\ 0 & \frac{7}{2} & -5 \\ 0 & 0 & 8 \end{vmatrix}$$

$$= (2) \left(\frac{7}{2}\right) (8) = 56$$

$$A_{13} (1)$$

Once the matrix is in upper triangular form, its determinant can be immediately evaluated as the product of the elements on the main diagonal.

16. If

$$A = \begin{bmatrix} -1 & 2 & 3\\ 5 & -2 & 1\\ 8 & -2 & 5 \end{bmatrix}$$

then Theorem 3.2.4 says that A is invertible if and only if $det(A) \neq 0$. We calculate

$$det(A) = \begin{vmatrix} -1 & 2 & 3 \\ 5 & -2 & 1 \\ 8 & -2 & 5 \end{vmatrix} = -\begin{vmatrix} 1 & -2 & -3 \\ 5 & -2 & 1 \\ 8 & -2 & 5 \end{vmatrix} \qquad M_1(-1)$$
$$= -\begin{vmatrix} 1 & -2 & -3 \\ 0 & 8 & 16 \\ 0 & 14 & 29 \end{vmatrix} \qquad A_{12}(-5), A_{13}(-8)$$
$$= -8\begin{vmatrix} 1 & -2 & -3 \\ 0 & 1 & 2 \\ 0 & 14 & 29 \end{vmatrix} \qquad M_2\left(\frac{1}{8}\right)$$
$$= -8\begin{vmatrix} 1 & -2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} \qquad A_{23}(-14)$$
$$= -8.$$

Since the determinant is nonzero, A is invertible.

36. Use properties of determinants:

$$\det (AB^T) = \det(A) \det (B^T) = \det(A) \det(B) = (5)(3) = 15.$$

54. Skew-symmetric means that $A^T = -A$. We use properties of the determinant:

$$\det(A) = \det(A^T) = \det(-A) = -\det(A).$$

Since det(A) = -det(A), it must be the case that det(A) = 0.

4.2

T/F

6. T

Problems

- 6. The set S is the set of singular 2×2 matrices with real entries.
 - (a) The zero vector in $M_2(\mathbb{R})$ is the matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. We check that $\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0,$

which tells us that this matrix is in S.

(b) Consider

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

The two summands are in S because

$$\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0 = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix},$$

but the right hand side is not in S because

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0.$$

(c) Yes, S is closed under scalar multiplication. If $c \in \mathbb{R}$, and $A \in S$, we know from our study of determinants that

$$\det(cA) = c^2 \det(A) = c^2(0) = 0,$$

so $cA \in S$.

10. If $A = (a_{ij})_{m \times n}$ and $Z = (z_{ij})_{m \times n}$ then

$$A + Z = \left(a_{ij} + z_{ij}\right)_{m \times n},$$

so A + Z = A when $z_{ij} = 0$ for all *i* and *j*. Thus, the zero vector in $M_{m \times n}(\mathbb{R})$ is the zero matrix $Z = (0)_{m \times n}$, and from now on we will just write 0 instead of Z. Let $B = (b_{ij})_{m \times n}$. Then

$$0 = A + B = \left(a_{ij} + b_{ij}\right)_{m \times n}$$

if $b_{ij} = -a_{ij}$ for all *i* and *j*. With *B* defined in this way, *B* is the additive inverse of *A* and we can write B = -A.

4.3

Problems

4.

$$S = \left\{ \mathbf{x} \in \mathbb{R}^4 : \mathbf{x} = (x_1, 0, x_3, 2), \ x_1 \in \mathbb{R}, \ x_3 \in \mathbb{R} \right\}$$

In order to be a subspace, S must contain the zero vector of V. The zero vector of \mathbb{R}^4 is (0,0,0,0). We can see that this vector is not in S because the last coordinates of $(x_1,0,x_3,2)$ and (0,0,0,0) do not agree. This means that S is not a subspace of V.

16.

$$S = \{ p(x) \in P_2 : p(x) = ax^2 + b, \ a \in \mathbb{R}, \ b \in \mathbb{R} \}$$

First, let's check that S contains the zero vector. The zero vector in P_2 is $0x^2 + 0x + 0$. This is the element of S with a = 0 and b = 0, so $\mathbf{0} \in S$. Now we need to check that S is closed under addition and scalar multiplication. Two generic elements of S are $ax^2 + b$ and $cx^2 + d$, with $a, b, c, d \in \mathbb{R}$.

$$(ax^{2}+b) + (cx^{2}+d) = (a+c)x^{2} + (b+d) \in S$$

Also, if $k \in \mathbb{R}$ then

$$k(ax^{2}+b) = (ka)x^{2} + (kb) \in S.$$

Since S is a nonempty subset of V that is closed under addition and scalar multiplication, S is a subspace of V.

24. (a) Let's check the properties that $S_1 \cup S_2$ needs in order to be a subspace. First, we check that $\mathbf{0} \in S_1 \cup S_2$. Well, $\mathbf{0} \in S_1$ and $\mathbf{0} \in S_2$, so $\mathbf{0}$ is certainly in $S_1 \cup S_2$. Next, if $c \in \mathbb{R}$ and $\mathbf{x} \in S_1 \cup S_2$ then either $\mathbf{x} \in S_1$, in which case $c\mathbf{x} \in S_1$, or $\mathbf{x} \in S_2$, in which case $c\mathbf{x} \in S_2$, so $c\mathbf{x} \in S_1 \cup S_2$.

The one property left is being closed under addition, and this is the one that fails. If $\mathbf{x} \in S_1 \cup S_2$ and $\mathbf{y} \in S_1 \cup S_2$ then there are three cases: either \mathbf{x} and \mathbf{y} are both in S_1 , both in S_2 , or one is in S_1 and the other is in S_2 . If both \mathbf{x} and \mathbf{y} lie in the same subspace, say in S_1 , then their sum is also in S_1 . The problem comes when you try to add a vector in one subspace to a vector in the other. In general, there is no guarantee that the sum is in either one. Thus, $S_1 \cup S_2$ is not, in general, a subspace of V.

- (b) As noted in (a), $\mathbf{0} \in S_1$ and $\mathbf{0} \in S_2$ because both are subspaces of V, so $\mathbf{0} \in S_1 \cap S_2$. If \mathbf{x} and \mathbf{y} are in $S_1 \cap S_2$ then $\mathbf{x}, \mathbf{y} \in S_1$, which tells us that $\mathbf{x} + \mathbf{y} \in S_1$, and $\mathbf{x}, \mathbf{y} \in S_2$, so $\mathbf{x} + \mathbf{y} \in S_2$. Together, this tells us that $\mathbf{x} + \mathbf{y} \in S_1 \cap S_2$. Finally, if $c \in \mathbb{R}$ and $\mathbf{x} \in S_1 \cap S_2$ then $c\mathbf{x} \in S_1$ because $\mathbf{x} \in S_1$ and $c\mathbf{x} \in S_2$ because $\mathbf{x} \in S_2$. Hence, $c\mathbf{x} \in S_1 \cap S_2$, and we can conclude that $S_1 \cap S_2$ is a subspace of V.
- (c) We can write $\mathbf{0} = \mathbf{0} + \mathbf{0}$ to show that $\mathbf{0} \in S_1 + S_2$. If $\mathbf{x} + \mathbf{y} \in S_1 + S_2$ and $\mathbf{w} + \mathbf{z} \in S_1 + S_2$ with $\mathbf{x}, \mathbf{w} \in S_1$ and $\mathbf{y}, \mathbf{z} \in S_2$ then

$$(\mathbf{x} + \mathbf{y}) + (\mathbf{w} + \mathbf{z}) = (\mathbf{x} + \mathbf{w}) + (\mathbf{y} + \mathbf{z})$$

is in $S_1 + S_2$ because $\mathbf{x} + \mathbf{w} \in S_1$ and $\mathbf{y} + \mathbf{z} \in S_2$. Now suppose $c \in \mathbb{R}$ and $\mathbf{x} + \mathbf{y} \in S_1 + S_2$ with $\mathbf{x} \in S_1$ and $\mathbf{y} \in S_2$ then

$$c\left(\mathbf{x}+\mathbf{y}\right)=c\mathbf{x}+c\mathbf{y}$$

is in $S_1 + S_2$ because $c\mathbf{x} \in S_1$ and $c\mathbf{y} \in S_2$.

Notice that for any $\mathbf{x} \in S_1$ we have $\mathbf{x} = \mathbf{x} + \mathbf{0} \in S_1 + S_2$ and for $\mathbf{y} \in S_2$, write $\mathbf{y} = \mathbf{0} + \mathbf{y} \in S_1 + S_2$. What this shows is that $S_1 \cup S_2$ is a subset (but not a subspace) of $S_1 + S_2$. In fact, $S_1 + S_2$ is the smallest subspace of V that contains $S_1 \cup S_2$ because we have corrected the one problem in part (a); $S_1 + S_2$ contains the sums of vectors from S_1 and S_2 .

4.4

T/F

4. F

6. F

Problems

12. The definition of S involves two parameters: c_1 and c_2 . We can determine a spanning set for S by "pulling out" the coefficients of c_1 and c_2 . Writing the vectors as columns,

$$\begin{bmatrix} c_1 \\ c_2 \\ c_2 - c_1 \\ c_1 - 2c_2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 1 \\ -2 \end{bmatrix}.$$

So these two vectors—(1, 0, -1, 1) and (0, 1, 1, -2)—span the subspace S.

14. To find the null space of A, we need to find the solution space of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Do this by Gauss-Jordan elimination:

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{bmatrix} \xrightarrow{A_{12}(-3), A_{13}(-5)} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & -4 \\ 0 & -4 & -8 \end{bmatrix}$$
$$\xrightarrow{M_2\left(-\frac{1}{2}\right)} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -4 & -8 \end{bmatrix}$$
$$\xrightarrow{A_{23}(4)} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{A_{21}(-2)} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

The reduced row-echelon form of A tells us that the solution set to $A\mathbf{x} = \mathbf{0}$ is

$$\left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = (t, -2t, t), \ t \in \mathbb{R} \right\}.$$

A spanning set for the null space of A is given by the coefficients of the free variable t; the null space of A is spanned by (1, -2, 1).

16. A generic element of $M_2(\mathbb{R})$ looks like

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

If the matrix is symmetric then $a_{21} = a_{12}$, so this matrix is

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$

Now we can write

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} = a_{11} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= a_{11}A_1 + a_{22}A_2 + a_{12}A_3$$

and this shows that A_1 , A_2 , and A_3 span this subspace of $M_2(\mathbb{R})$.