
Solutions – Homework 5 Math 240, Fall 2012

3.1

T/F

2. T

4. T

Problems

10. ∣∣∣∣−4 10
−1 8

∣∣∣∣ = (−4)(8))− (−1)(10) = −32 + 10 = −22

18. ∣∣∣∣∣∣
3 2 6
2 1 −1
−1 1 4

∣∣∣∣∣∣ =
(3)(1)(4) + (2)(−1)(−1) + (6)(2)(1)

− (−1)(1)(6)− (1)(−1)(3)− (4)(2)(2)

= 12 + 2 + 12 + 6 + 3− 16

= 19

22. If

y1(x) = cos 2x,

y2(x) = sin 2x, and

y3(x) = ex

then

y′′′1 − y′′1 + 4y′1 − 4y1 = 8 sin 2x + 4 cos 2x− 8 sin 2x− 4 cos 2x = 0,

y′′′2 − y′′2 + 4y′2 − 4y2 = −8 cos 2x + 4 sin 2x + 8 cos 2x− 4 sin 2x = 0, and

y′′′3 − y′′3 + 4y′3 − 4y3 = ex − ex + 4ex − 4ex.

The Wronskian is∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
cos 2x sin 2x ex

−2 sin 2x 2 cos 2x ex

−4 cos 2x −4 sin 2x ex

∣∣∣∣∣∣
=

2ex cos2 2x− 4ex sin 2x cos 2x + 8ex sinx 2x

+ 8ex cos2 2x + 4ex sin 2x cos 2x + 2ex sin2 2x

= 2ex + 8ex.

This function is positive for all real x because ex is positive.



24. (a,b) We can list the permutations in such a way that neighboring ones differ only by
a transposition. This means that the parity will alternate between even and odd.

Permutation Parity
(1, 2, 3, 4) even
(1, 2, 4, 3) odd
(1, 4, 2, 3) even
(4, 1, 2, 3) odd
(4, 1, 3, 2) even
(1, 4, 3, 2) odd
(1, 3, 4, 2) even
(1, 3, 2, 4) odd
(3, 1, 2, 4) even
(3, 1, 4, 2) odd
(3, 4, 1, 2) even
(4, 3, 1, 2) odd

Permutation Parity
(4, 3, 2, 1) even
(3, 4, 2, 1) odd
(3, 2, 4, 1) even
(3, 2, 1, 4) odd
(2, 3, 1, 4) even
(2, 3, 4, 1) odd
(2, 4, 3, 1) even
(4, 2, 3, 1) odd
(4, 2, 1, 3) even
(2, 4, 1, 3) odd
(2, 1, 4, 3) even
(2, 1, 3, 4) odd

(c) The forumula for the determinant of a 4× 4 matrix is

∣∣∣∣∣∣∣∣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ =

a11a22a33a44 − a11a22a34a43 + a11a24a32a43 − a14a21a32a43

+ a14a21a33a42 − a11a24a33a42 + a11a23a34a42 − a11a23a32a44

+ a13a21a32a44 − a13a21a34a42 + a13a24a31a42 − a14a23a31a42

+ a14a23a32a41 − a13a24a32a41 + a13a22a34a41 − a13a22a31a44

+ a12a23a31a44 − a12a23a34a41 + a12a24a33a41 − a14a22a33a41

+ a14a22a31a43 − a12a24a31a43 + a12a21a34a43 − a12a21a33a44

3.2

T/F

2. T

Problems

2. ∣∣∣∣∣∣
2 −1 4
3 2 1
−2 1 4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 −1 4
0 7

2
−5

−2 1 4

∣∣∣∣∣∣ A12

(
−3

2

)

=

∣∣∣∣∣∣
2 −1 4
0 7

2
−5

0 0 8

∣∣∣∣∣∣ A13 (1)

= (2)
(
7
2

)
(8) = 56

Once the matrix is in upper triangular form, its determinant can be immediately
evaluated as the product of the elements on the main diagonal.



16. If

A =

−1 2 3
5 −2 1
8 −2 5


then Theorem 3.2.4 says that A is invertible if and only if det(A) 6= 0. We calculate

det(A) =

∣∣∣∣∣∣
−1 2 3
5 −2 1
8 −2 5

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 −2 −3
5 −2 1
8 −2 5

∣∣∣∣∣∣ M1(−1)

= −

∣∣∣∣∣∣
1 −2 −3
0 8 16
0 14 29

∣∣∣∣∣∣ A12(−5), A13(−8)

= −8

∣∣∣∣∣∣
1 −2 −3
0 1 2
0 14 29

∣∣∣∣∣∣ M2

(
1
8

)

= −8

∣∣∣∣∣∣
1 −2 −3
0 1 2
0 0 1

∣∣∣∣∣∣ A23(−14)

= −8.

Since the determinant is nonzero, A is invertible.

36. Use properties of determinants:

det
(
ABT

)
= det(A) det

(
BT
)

= det(A) det(B) = (5)(3) = 15.

54. Skew-symmetric means that AT = −A. We use properties of the determinant:

det(A) = det
(
AT
)

= det(−A) = − det(A).

Since det(A) = − det(A), it must be the case that det(A) = 0.

4.2

T/F

6. T

Problems

6. The set S is the set of singular 2× 2 matrices with real entries.

(a) The zero vector in M2 (R) is the matrix

[
0 0
0 0

]
. We check that∣∣∣∣0 0

0 0

∣∣∣∣ = 0,

which tells us that this matrix is in S.



(b) Consider [
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
.

The two summands are in S because∣∣∣∣1 0
0 0

∣∣∣∣ = 0 =

∣∣∣∣0 0
0 1

∣∣∣∣ ,
but the right hand side is not in S because∣∣∣∣1 0

0 1

∣∣∣∣ = 1 6= 0.

(c) Yes, S is closed under scalar multiplication. If c ∈ R, and A ∈ S, we know from
our study of determinants that

det(cA) = c2 det(A) = c2(0) = 0,

so cA ∈ S.

10. If A = (aij)m×n and Z = (zij)m×n then

A + Z = (aij + zij)m×n ,

so A + Z = A when zij = 0 for all i and j. Thus, the zero vector in Mm×n (R) is the
zero matrix Z = (0)m×n, and from now on we will just write 0 instead of Z.

Let B = (bij)m×n. Then
0 = A + B = (aij + bij)m×n

if bij = −aij for all i and j. With B defined in this way, B is the additive inverse of A
and we can write B = −A.

4.3

Problems

4.
S =

{
x ∈ R4 : x = (x1, 0, x3, 2) , x1 ∈ R, x3 ∈ R

}
In order to be a subspace, S must contain the zero vector of V . The zero vector of R4

is (0, 0, 0, 0). We can see that this vector is not in S because the last coordinates of
(x1, 0, x3, 2) and (0, 0, 0, 0) do not agree. This means that S is not a subspace of V .

16.
S =

{
p(x) ∈ P2 : p(x) = ax2 + b, a ∈ R, b ∈ R

}
First, let’s check that S contains the zero vector. The zero vector in P2 is 0x2 + 0x+ 0.
This is the element of S with a = 0 and b = 0, so 0 ∈ S. Now we need to check that



S is closed under addition and scalar multiplication. Two generic elements of S are
ax2 + b and cx2 + d, with a, b, c, d ∈ R.(

ax2 + b
)

+
(
cx2 + d

)
= (a + c)x2 + (b + d) ∈ S

Also, if k ∈ R then
k
(
ax2 + b

)
= (ka)x2 + (kb) ∈ S.

Since S is a nonempty subset of V that is closed under addition and scalar multiplica-
tion, S is a subspace of V .

24. (a) Let’s check the properties that S1 ∪ S2 needs in order to be a subspace. First, we
check that 0 ∈ S1 ∪ S2. Well, 0 ∈ S1 and 0 ∈ S2, so 0 is certainly in S1 ∪ S2.
Next, if c ∈ R and x ∈ S1 ∪ S2 then either x ∈ S1, in which case cx ∈ S1, or
x ∈ S2, in which case cx ∈ S2, so cx ∈ S1 ∪ S2.

The one property left is being closed under addition, and this is the one that fails.
If x ∈ S1∪S2 and y ∈ S1∪S2 then there are three cases: either x and y are both
in S1, both in S2, or one is in S1 and the other is in S2. If both x and y lie in the
same subspace, say in S1, then their sum is also in S1. The problem comes when
you try to add a vector in one subspace to a vector in the other. In general, there
is no guarantee that the sum is in either one. Thus, S1 ∪ S2 is not, in general, a
subspace of V .

(b) As noted in (a), 0 ∈ S1 and 0 ∈ S2 because both are subspaces of V , so 0 ∈ S1∩S2.
If x and y are in S1 ∩ S2 then x,y ∈ S1, which tells us that x + y ∈ S1, and
x,y ∈ S2, so x + y ∈ S2. Together, this tells us that x + y ∈ S1 ∩ S2. Finally, if
c ∈ R and x ∈ S1 ∩ S2 then cx ∈ S1 because x ∈ S1 and cx ∈ S2 because x ∈ S2.
Hence, cx ∈ S1 ∩ S2, and we can conclude that S1 ∩ S2 is a subspace of V .

(c) We can write 0 = 0 + 0 to show that 0 ∈ S1 + S2. If x + y ∈ S1 + S2 and
w + z ∈ S1 + S2 with x,w ∈ S1 and y, z ∈ S2 then

(x + y) + (w + z) = (x + w) + (y + z)

is in S1 + S2 because x + w ∈ S1 and y + z ∈ S2. Now suppose c ∈ R and
x + y ∈ S1 + S2 with x ∈ S1 and y ∈ S2 then

c (x + y) = cx + cy

is in S1 + S2 because cx ∈ S1 and cy ∈ S2.

Notice that for any x ∈ S1 we have x = x+ 0 ∈ S1 +S2 and for y ∈ S2, write
y = 0 + y ∈ S1 + S2. What this shows is that S1 ∪ S2 is a subset (but not a
subspace) of S1 + S2. In fact, S1 + S2 is the smallest subspace of V that contains
S1 ∪ S2 because we have corrected the one problem in part (a); S1 + S2 contains
the sums of vectors from S1 and S2.

4.4

T/F

4. F



6. F

Problems

12. The definition of S involves two parameters: c1 and c2. We can determine a spanning
set for S by “pulling out” the coefficients of c1 and c2. Writing the vectors as columns,

c1
c2

c2 − c1
c1 − 2c2

 = c1


1
0
−1
1

+ c2


0
1
1
−2

 .

So these two vectors—(1, 0,−1, 1) and (0, 1, 1,−2)—span the subspace S.

14. To find the null space of A, we need to find the solution space of the homogeneous
linear system Ax = 0. Do this by Gauss-Jordan elimination:1 2 3

3 4 5
5 6 7

 A12(−3),A13(−5)−−−−−−−−−−→

1 2 3
0 −2 −4
0 −4 −8


M2

(
−1
2

)
−−−−−→

1 2 3
0 1 2
0 −4 −8


A23(4)−−−→

1 2 3
0 1 2
0 0 0


A21(−2)−−−−→

1 0 −1
0 1 2
0 0 0


The reduced row-echelon form of A tells us that the solution set to Ax = 0 is{

x ∈ R3 : x = (t,−2t, t), t ∈ R
}
.

A spanning set for the null space of A is given by the coefficients of the free variable t;
the null space of A is spanned by (1,−2, 1).

16. A generic element of M2(R) looks like[
a11 a12
a21 a22

]
.

If the matrix is symmetric then a21 = a12, so this matrix is[
a11 a12
a12 a22

]
.

Now we can write [
a11 a12
a12 a22

]
= a11

[
1 0
0 0

]
+ a22

[
0 0
0 1

]
+ a12

[
0 1
1 0

]
= a11A1 + a22A2 + a12A3

and this shows that A1, A2, and A3 span this subspace of M2(R).


