3.1

T/F
2. T
4. T

Problems

10.

$$
\left.\left|\begin{array}{cc}
-4 & 10 \\
-1 & 8
\end{array}\right|=(-4)(8)\right)-(-1)(10)=-32+10=-22
$$

18.

$$
\begin{aligned}
\left|\begin{array}{ccc}
3 & 2 & 6 \\
2 & 1 & -1 \\
-1 & 1 & 4
\end{array}\right| & \left.=\begin{array}{l}
(3)(1)(4)+(2)(-1)(-1)+(6)(2)(1) \\
\\
\\
\\
= \\
\\
\\
= \\
\\
\end{array}\right)=19+2+12+6+3-16
\end{aligned}
$$

22. If

$$
\begin{aligned}
& y_{1}(x)=\cos 2 x, \\
& y_{2}(x)=\sin 2 x, \text { and } \\
& y_{3}(x)=e^{x}
\end{aligned}
$$

then

$$
\begin{gathered}
y_{1}^{\prime \prime \prime}-y_{1}^{\prime \prime}+4 y_{1}^{\prime}-4 y_{1}=8 \sin 2 x+4 \cos 2 x-8 \sin 2 x-4 \cos 2 x=0, \\
y_{2}^{\prime \prime \prime}-y_{2}^{\prime \prime}+4 y_{2}^{\prime}-4 y_{2}=-8 \cos 2 x+4 \sin 2 x+8 \cos 2 x-4 \sin 2 x=0, \text { and } \\
y_{3}^{\prime \prime \prime}-y_{3}^{\prime \prime}+4 y_{3}^{\prime}-4 y_{3}=e^{x}-e^{x}+4 e^{x}-4 e^{x} .
\end{gathered}
$$

The Wronskian is

$$
\begin{aligned}
\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right| & =\left|\begin{array}{ccc}
\cos 2 x & \sin 2 x & e^{x} \\
-2 \sin 2 x & 2 \cos 2 x & e^{x} \\
-4 \cos 2 x & -4 \sin 2 x & e^{x}
\end{array}\right| \\
& =\begin{array}{l}
2 e^{x} \cos ^{2} 2 x-4 e^{x} \sin 2 x \cos 2 x+8 e^{x} \sin ^{x} 2 x \\
\\
+8 e^{x} \cos ^{2} 2 x+4 e^{x} \sin 2 x \cos 2 x+2 e^{x} \sin ^{2} 2 x \\
\end{array}=2 e^{x}+8 e^{x} .
\end{aligned}
$$

This function is positive for all real x because e^{x} is positive.
24. (a,b) We can list the permutations in such a way that neighboring ones differ only by a transposition. This means that the parity will alternate between even and odd.

Permutation	Parity		Permutation	Parity
$(1,2,3,4)$	even	$(4,3,2,1)$	even	
$(1,2,4,3)$	odd	$(3,4,2,1)$	odd	
$(1,4,2,3)$	even	$(3,2,4,1)$	even	
$(4,1,2,3)$	odd	$(3,2,1,4)$	odd	
$(4,1,3,2)$	even	$(2,3,1,4)$	even	
$(1,4,3,2)$	odd	$(2,3,4,1)$	odd	
$(1,3,4,2)$	even	$(2,4,3,1)$	even	
$(1,3,2,4)$	odd	$(4,2,3,1)$	odd	
$(3,1,2,4)$	even	$(4,2,1,3)$	even	
$(3,1,4,2)$	odd	$(2,4,1,3)$	odd	
$(3,4,1,2)$	even	$(2,1,4,3)$	even	
$(4,3,1,2)$	odd	$(2,1,3,4)$	odd	

(c) The forumula for the determinant of a 4×4 matrix is

$$
\begin{aligned}
& \\
&\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right|=\begin{array}{l}
a_{11} a_{22} a_{33} a_{44}-a_{11} a_{22} a_{34} a_{43}+a_{11} a_{24} a_{32} a_{43}-a_{14} a_{21} a_{32} a_{43} \\
\end{array}+\begin{array}{l}
\\
\end{array} \quad+a_{14} a_{21} a_{33} a_{21} a_{32} a_{44}-a_{11} a_{24} a_{33} a_{13} a_{21} a_{34} a_{42}+a_{11} a_{23} a_{34} a_{24} a_{31} a_{42}-a_{11} a_{23} a_{32} a_{14} a_{23} a_{31} a_{42} \\
&+a_{14} a_{23} a_{32} a_{41}-a_{13} a_{24} a_{32} a_{41}+a_{13} a_{22} a_{34} a_{41}-a_{13} a_{22} a_{31} a_{44} \\
&+a_{12} a_{23} a_{31} a_{44}-a_{12} a_{23} a_{34} a_{41}+a_{12} a_{24} a_{33} a_{41}-a_{14} a_{22} a_{33} a_{41} \\
&+a_{14} a_{22} a_{31} a_{43}-a_{12} a_{24} a_{31} a_{43}+a_{12} a_{21} a_{34} a_{43}-a_{12} a_{21} a_{33} a_{44}
\end{aligned}
$$

3.2

T/F
2. T

Problems

2.

$$
\begin{array}{rlr}
\left|\begin{array}{ccc}
2 & -1 & 4 \\
3 & 2 & 1 \\
-2 & 1 & 4
\end{array}\right| & =\left|\begin{array}{ccc}
2 & -1 & 4 \\
0 & \frac{7}{2} & -5 \\
-2 & 1 & 4
\end{array}\right| & A_{12}\left(-\frac{3}{2}\right) \\
& =\left|\begin{array}{ccc}
2 & -1 & 4 \\
0 & \frac{7}{2} & -5 \\
0 & 0 & 8
\end{array}\right| & A_{13}(1) \\
& =(2)\left(\frac{7}{2}\right)(8)=56 &
\end{array}
$$

Once the matrix is in upper triangular form, its determinant can be immediately evaluated as the product of the elements on the main diagonal.
16. If

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 3 \\
5 & -2 & 1 \\
8 & -2 & 5
\end{array}\right]
$$

then Theorem 3.2.4 says that A is invertible if and only if $\operatorname{det}(A) \neq 0$. We calculate

$$
\begin{array}{rlrl}
\operatorname{det}(A)=\left|\begin{array}{ccc}
-1 & 2 & 3 \\
5 & -2 & 1 \\
8 & -2 & 5
\end{array}\right| & =-\left|\begin{array}{ccc}
1 & -2 & -3 \\
5 & -2 & 1 \\
8 & -2 & 5
\end{array}\right| & M_{1}(-1) \\
& =-\left|\begin{array}{ccc}
1 & -2 & -3 \\
0 & 8 & 16 \\
0 & 14 & 29
\end{array}\right| & A_{12}(-5), A_{13}(-8) \\
& =-8\left|\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 2 \\
0 & 14 & 29
\end{array}\right| & M_{2}\left(\frac{1}{8}\right) \\
& =-8\left|\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right| & A_{23}(-14) \\
& =-8 .
\end{array}
$$

Since the determinant is nonzero, A is invertible.
36. Use properties of determinants:

$$
\operatorname{det}\left(A B^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(B^{T}\right)=\operatorname{det}(A) \operatorname{det}(B)=(5)(3)=15
$$

54. Skew-symmetric means that $A^{T}=-A$. We use properties of the determinant:

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)=\operatorname{det}(-A)=-\operatorname{det}(A)
$$

Since $\operatorname{det}(A)=-\operatorname{det}(A)$, it must be the case that $\operatorname{det}(A)=0$.

4.2

T/F
6. T

Problems

6. The set S is the set of singular 2×2 matrices with real entries.
(a) The zero vector in $M_{2}(\mathbb{R})$ is the matrix $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. We check that

$$
\left|\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right|=0,
$$

which tells us that this matrix is in S.
(b) Consider

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The two summands are in S because

$$
\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|=0=\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|,
$$

but the right hand side is not in S because

$$
\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \neq 0 .
$$

(c) Yes, S is closed under scalar multiplication. If $c \in \mathbb{R}$, and $A \in S$, we know from our study of determinants that

$$
\operatorname{det}(c A)=c^{2} \operatorname{det}(A)=c^{2}(0)=0
$$

so $c A \in S$.
10. If $A=\left(a_{i j}\right)_{m \times n}$ and $Z=\left(z_{i j}\right)_{m \times n}$ then

$$
A+Z=\left(a_{i j}+z_{i j}\right)_{m \times n}
$$

so $A+Z=A$ when $z_{i j}=0$ for all i and j. Thus, the zero vector in $M_{m \times n}(\mathbb{R})$ is the zero matrix $Z=(0)_{m \times n}$, and from now on we will just write 0 instead of Z.
Let $B=\left(b_{i j}\right)_{m \times n}$. Then

$$
0=A+B=\left(a_{i j}+b_{i j}\right)_{m \times n}
$$

if $b_{i j}=-a_{i j}$ for all i and j. With B defined in this way, B is the additive inverse of A and we can write $B=-A$.

4.3

Problems

4.

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{4}: \mathbf{x}=\left(x_{1}, 0, x_{3}, 2\right), x_{1} \in \mathbb{R}, x_{3} \in \mathbb{R}\right\}
$$

In order to be a subspace, S must contain the zero vector of V. The zero vector of \mathbb{R}^{4} is $(0,0,0,0)$. We can see that this vector is not in S because the last coordinates of $\left(x_{1}, 0, x_{3}, 2\right)$ and $(0,0,0,0)$ do not agree. This means that S is not a subspace of V.
16.

$$
S=\left\{p(x) \in P_{2}: p(x)=a x^{2}+b, a \in \mathbb{R}, b \in \mathbb{R}\right\}
$$

First, let's check that S contains the zero vector. The zero vector in P_{2} is $0 x^{2}+0 x+0$. This is the element of S with $a=0$ and $b=0$, so $\mathbf{0} \in S$. Now we need to check that
S is closed under addition and scalar multiplication. Two generic elements of S are $a x^{2}+b$ and $c x^{2}+d$, with $a, b, c, d \in \mathbb{R}$.

$$
\left(a x^{2}+b\right)+\left(c x^{2}+d\right)=(a+c) x^{2}+(b+d) \in S
$$

Also, if $k \in \mathbb{R}$ then

$$
k\left(a x^{2}+b\right)=(k a) x^{2}+(k b) \in S
$$

Since S is a nonempty subset of V that is closed under addition and scalar multiplication, S is a subspace of V.
24. (a) Let's check the properties that $S_{1} \cup S_{2}$ needs in order to be a subspace. First, we check that $\mathbf{0} \in S_{1} \cup S_{2}$. Well, $\mathbf{0} \in S_{1}$ and $\mathbf{0} \in S_{2}$, so $\mathbf{0}$ is certainly in $S_{1} \cup S_{2}$. Next, if $c \in \mathbb{R}$ and $\mathbf{x} \in S_{1} \cup S_{2}$ then either $\mathbf{x} \in S_{1}$, in which case $c \mathbf{x} \in S_{1}$, or $\mathbf{x} \in S_{2}$, in which case $c \mathbf{x} \in S_{2}$, so $c \mathbf{x} \in S_{1} \cup S_{2}$.
The one property left is being closed under addition, and this is the one that fails. If $\mathbf{x} \in S_{1} \cup S_{2}$ and $\mathbf{y} \in S_{1} \cup S_{2}$ then there are three cases: either \mathbf{x} and \mathbf{y} are both in S_{1}, both in S_{2}, or one is in S_{1} and the other is in S_{2}. If both \mathbf{x} and \mathbf{y} lie in the same subspace, say in S_{1}, then their sum is also in S_{1}. The problem comes when you try to add a vector in one subspace to a vector in the other. In general, there is no guarantee that the sum is in either one. Thus, $S_{1} \cup S_{2}$ is not, in general, a subspace of V.
(b) As noted in (a), $\mathbf{0} \in S_{1}$ and $\mathbf{0} \in S_{2}$ because both are subspaces of V, so $\mathbf{0} \in S_{1} \cap S_{2}$. If \mathbf{x} and \mathbf{y} are in $S_{1} \cap S_{2}$ then $\mathbf{x}, \mathbf{y} \in S_{1}$, which tells us that $\mathbf{x}+\mathbf{y} \in S_{1}$, and $\mathbf{x}, \mathbf{y} \in S_{2}$, so $\mathbf{x}+\mathbf{y} \in S_{2}$. Together, this tells us that $\mathbf{x}+\mathbf{y} \in S_{1} \cap S_{2}$. Finally, if $c \in \mathbb{R}$ and $\mathbf{x} \in S_{1} \cap S_{2}$ then $c \mathbf{x} \in S_{1}$ because $\mathbf{x} \in S_{1}$ and $c \mathbf{x} \in S_{2}$ because $\mathbf{x} \in S_{2}$. Hence, $c \mathbf{x} \in S_{1} \cap S_{2}$, and we can conclude that $S_{1} \cap S_{2}$ is a subspace of V.
(c) We can write $\mathbf{0}=\mathbf{0}+\mathbf{0}$ to show that $\mathbf{0} \in S_{1}+S_{2}$. If $\mathbf{x}+\mathbf{y} \in S_{1}+S_{2}$ and $\mathbf{w}+\mathbf{z} \in S_{1}+S_{2}$ with $\mathbf{x}, \mathbf{w} \in S_{1}$ and $\mathbf{y}, \mathbf{z} \in S_{2}$ then

$$
(\mathbf{x}+\mathbf{y})+(\mathbf{w}+\mathbf{z})=(\mathbf{x}+\mathbf{w})+(\mathbf{y}+\mathbf{z})
$$

is in $S_{1}+S_{2}$ because $\mathbf{x}+\mathbf{w} \in S_{1}$ and $\mathbf{y}+\mathbf{z} \in S_{2}$. Now suppose $c \in \mathbb{R}$ and $\mathbf{x}+\mathbf{y} \in S_{1}+S_{2}$ with $\mathbf{x} \in S_{1}$ and $\mathbf{y} \in S_{2}$ then

$$
c(\mathbf{x}+\mathbf{y})=c \mathbf{x}+c \mathbf{y}
$$

is in $S_{1}+S_{2}$ because $c \mathbf{x} \in S_{1}$ and $c \mathbf{y} \in S_{2}$.
Notice that for any $\mathbf{x} \in S_{1}$ we have $\mathbf{x}=\mathbf{x}+\mathbf{0} \in S_{1}+S_{2}$ and for $\mathbf{y} \in S_{2}$, write $\mathbf{y}=\mathbf{0}+\mathbf{y} \in S_{1}+S_{2}$. What this shows is that $S_{1} \cup S_{2}$ is a subset (but not a subspace) of $S_{1}+S_{2}$. In fact, $S_{1}+S_{2}$ is the smallest subspace of V that contains $S_{1} \cup S_{2}$ because we have corrected the one problem in part (a); $S_{1}+S_{2}$ contains the sums of vectors from S_{1} and S_{2}.
6. F

Problems

12. The definition of S involves two parameters: c_{1} and c_{2}. We can determine a spanning set for S by "pulling out" the coefficients of c_{1} and c_{2}. Writing the vectors as columns,

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{2}-c_{1} \\
c_{1}-2 c_{2}
\end{array}\right]=c_{1}\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
1 \\
1 \\
-2
\end{array}\right]
$$

So these two vectors- $(1,0,-1,1)$ and $(0,1,1,-2)$-span the subspace S.
14. To find the null space of A, we need to find the solution space of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$. Do this by Gauss-Jordan elimination:

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
5 & 6 & 7
\end{array}\right] } & \xrightarrow{A_{12}(-3), A_{13}(-5)}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -4 \\
0 & -4 & -8
\end{array}\right] \\
& \xrightarrow{M_{2}\left(-\frac{1}{2}\right)}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -4 & -8
\end{array}\right] \\
& \xrightarrow{A_{23}(4)}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{A_{21}(-2)}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The reduced row-echelon form of A tells us that the solution set to $A \mathbf{x}=\mathbf{0}$ is

$$
\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x}=(t,-2 t, t), t \in \mathbb{R}\right\}
$$

A spanning set for the null space of A is given by the coefficients of the free variable t; the null space of A is spanned by $(1,-2,1)$.
16. A generic element of $M_{2}(\mathbb{R})$ looks like

$$
\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

If the matrix is symmetric then $a_{21}=a_{12}$, so this matrix is

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right] .
$$

Now we can write

$$
\begin{aligned}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right] } & =a_{11}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+a_{22}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+a_{12}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& =a_{11} A_{1}+a_{22} A_{2}+a_{12} A_{3}
\end{aligned}
$$

and this shows that A_{1}, A_{2}, and A_{3} span this subspace of $M_{2}(\mathbb{R})$.

