Solutions — Homework 5 Math 240, Fall 2012
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22. If
y1(x) = cos 2z,
y2(x) = sin 2z, and
ys(x) = €”
then

"

vy — v + 4y, — 4y; = 8sin 2z + 4 cos 2z — 8sin 2z — 4 cos 2z = 0,
Yy — Uy + 4y — 4ys = —8cos 2z + 4sin 2z + 8 cos 2x — 4sin 2z = 0, and
ys —ys +4ys — dys = e — e” + 4e” — 4e”.

The Wronskian is

Y1 Y2 Y3 cos 2z sin 2x er
Yy vy sl =|—2sin2x  2cos2x €*
(VAT yg —4cos2x —4sin2z e*

B 26" cos? 2x — 4e® sin 2 cos 21 + 8¢” sin® 2x
+ 8¢” cos? 21 + 4e” sin 22 cos 2x + 2¢” sin® 2z

= 2¢” + 8e”.

This function is positive for all real = because e is positive.



24. (a,b) We can list the permutations in such a way that neighboring ones differ only by
a transposition. This means that the parity will alternate between even and odd.

Permutation Parity Permutation Parity
(1,2,3,4) even (4,3,2,1) even
(1,2,4,3) odd (3,4,2,1) odd
(1,4,2,3) even (3,2,4,1) even
(4,1,2,3)  odd (3,2,1,4)  odd
(4,1,3,2) even (2,3,1,4) even
(1,4,3,2) odd (2,3,4,1) odd
(1,3,4,2) even (2,4,3,1) even
(1,3,2,4)  odd (4,2,3,1)  odd
(3,1,2,4) even (4,2,1,3) even
(3,1,4,2)  odd (2,4,1,3)  odd
(3,4,1,2) even (2,1,4,3) even
(4,3,1,2) odd (2,1,3,4) odd

he determinant of a 4 x 4 matrix is

—+

(¢) The forumula for

(11022033044 — 11022034043 + Q11024032043 — 014021032043
14091033042 — 110240330 111093034049 — 4110230320
a1 Q12 a3 Gy + 14021033042 11024033042 + 011023034042 11423432044
ao1 Q99 A93 A9y + 13021032044 — 013021034042 + 013024031042 — Q14023031042
(31 a3z a3z A34 + A14G23032041 — Q13024032041 + Q13022034041 — Q13022031044
a a a a
41 ©42 B43 B4 + @12a23031A44 — (12023034041 + Q12024033041 — (14022033041

+ A14G22031043 — G12024031043 + A12021034043 — (12021033044
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Once the matrix is in upper triangular form, its determinant can be immediately
evaluated as the product of the elements on the main diagonal.



16. If

-1 2 3
A=1]15 -2 1
8 =2 5
then Theorem 3.2.4 says that A is invertible if and only if det(A) # 0. We calculate
-1 2 3 1 -2 -3
det(A)=1]5 -2 1ll=—-5 -2 1 Mi(-1)
8 -2 5 8 —2 5
1 -2 =3
=—0 8 16 A12(—5), A13(—8)
0 14 29
1 -2 -3
~8lo 1 2 My (1)
0 14 29
1 -2 =3
0 0 1
= —8.

Since the determinant is nonzero, A is invertible.
36. Use properties of determinants:
det (AB") = det(A) det (B") = det(A) det(B) = (5)(3) = 15.
54. Skew-symmetric means that A7 = —A. We use properties of the determinant:
det(A) = det (A") = det(—A) = — det(A).
Since det(A) = — det(A), it must be the case that det(A) = 0.
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6. The set S is the set of singular 2 x 2 matrices with real entries.

(a) The zero vector in M, (R) is the matrix [8 8] . We check that

0 0
0 0

o

which tells us that this matrix is in S.



(b) Consider

10 00 10
[0 0}*{0 1}_{0 1}
The two summands are in S because
‘1 0

0 0
o o=l

0 1
but the right hand side is not in S because

10
ol

(¢) Yes, S is closed under scalar multiplication. If ¢ € R, and A € S, we know from
our study of determinants that

det(cA) = ¢*det(A) = ¢*(0) = 0,
socAeS.

10. If A = (aij) and Z = (z;;) then

mxn mxn

A+ Z = (aij + 2ij) e »
so A+ Z = A when z;; = 0 for all 4 and j. Thus, the zero vector in M,,., (R) is the

zero matrix Z = (0), ..., and from now on we will just write 0 instead of Z.

Let B = (bl])an Then

OIA+B: (aij+bij)
if b;; = —a;; for all ¢ and j. With B defined in this way, B is the additive inverse of A
and we can write B = —A.

mXxn

4.3

Problems

4.
S:{X€R4:x:(x1,0,x3,2), r € R, xge]R}

In order to be a subspace, S must contain the zero vector of V. The zero vector of R*
is (0,0,0,0). We can see that this vector is not in .S because the last coordinates of
(21,0, x3,2) and (0,0,0,0) do not agree. This means that S is not a subspace of V.

16.
S:{p(x)epg:p(x):axQ—i-b, a € R, bER}

First, let’s check that S contains the zero vector. The zero vector in Py is 022 + 0z +0.
This is the element of S with a = 0 and b =0, so 0 € S. Now we need to check that



S is closed under addition and scalar multiplication. Two generic elements of S are
ax® + b and ca® + d, with a,b,c,d € R.

(az® +b) + (2’ +d) = (a+ )z’ + (b+d) € S

Also, if k € R then

k (az® 4+ b) = (ka)z® + (kb) € S.

Since S is a nonempty subset of V' that is closed under addition and scalar multiplica-
tion, S is a subspace of V.

24. (a)

4.4

T/F
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Let’s check the properties that S; U .S, needs in order to be a subspace. First, we
check that 0 € S; U S;. Well, 0 € 57 and 0 € S5, so 0 is certainly in S7 U Ss.
Next, if ¢ € R and x € 57 U Sy then either x € Sy, in which case c¢x € 57, or
X € Sy, in which case ¢x € Sy, so cx € 57U S,.

The one property left is being closed under addition, and this is the one that fails.
Ifx e S;1US; and y € S;US; then there are three cases: either x and y are both
in S7, both in S5, or one is in S7 and the other is in S5. If both x and y lie in the
same subspace, say in Sy, then their sum is also in S;. The problem comes when
you try to add a vector in one subspace to a vector in the other. In general, there
is no guarantee that the sum is in either one. Thus, S; U Sy is not, in general, a
subspace of V.

Asnoted in (a), 0 € S; and 0 € Sy because both are subspaces of V', so 0 € S1N.S,.
If x and y are in S; N .S; then x,y € S;, which tells us that x +y € 57, and
X,y € Sy, 50 x +y € Sy. Together, this tells us that x +y € S; N S,. Finally, if
c€ R and x € 51 NSy then e¢x € S| because x € S; and c¢x € Sy because x € S,.
Hence, cx € 51N 95,5, and we can conclude that S; N .S, is a subspace of V.

We can write 0 = 0 4+ 0 to show that 0 € S; + 5. If x4+ y € 57 + 55 and
w+z €S+ Sy with x, w € S; and y,z € S5 then

(x+y)+(Ww+z)=(x+w)+(y+2)

is in S; 4+ S5 because x +w € S} and y +z € S;. Now suppose ¢ € R and
X+y €S+ S with x € §; and y € S, then

c(x+y)=cx+cy

is in S7 + 95 because ¢x € S; and cy € S,.

Notice that for any x € S; we have x =x+0 € S; + S5 and for y € S5, write
y =04y € S+ 5. What this shows is that S; U Sy is a subset (but not a
subspace) of S + S5. In fact, S + S5 is the smallest subspace of V' that contains
S1U Sy because we have corrected the one problem in part (a); S; + S contains
the sums of vectors from S; and Ss.



6. F
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12. The definition of S involves two parameters: ¢; and ¢;. We can determine a spanning
set for S by “pulling out” the coefficients of ¢; and ¢y. Writing the vectors as columns,

C1 1 0

Co 0 1
Cy — (1 - A -1 te 1
C1 — 202 1 —2

So these two vectors—(1,0,—1,1) and (0, 1,1, —2)—span the subspace S.

14. To find the null space of A, we need to find the solution space of the homogeneous
linear system Ax = 0. Do this by Gauss-Jordan elimination:

1 2 3 () A (s 1 2 3
3 4 5 M) 0 —2 —4
5 6 7 0 —4 -8

M2(_%> 1 2 3

0 -4 —8
2
As® g 1 9

00 0
oo
An2 g 1 9

00 0

St

The reduced row-echelon form of A tells us that the solution set to Ax = 0 is

{X€R3:X:(t,—2t,t), tER}.

A spanning set for the null space of A is given by the coefficients of the free variable t;
the null space of A is spanned by (1,—2,1).

16. A generic element of Ms(R) looks like

a11 Q12
a21  a22 ]

If the matrix is symmetric then as; = a2, so this matrix is

@11 a2
@12 (22

ajpr Q12 —u 10+a 00+a 0 1
CL126L22_1100 2201 1210

= a1 Ay + ands + apAs
and this shows that Ay, Ay, and Az span this subspace of Ms(R).

Now we can write



