VC 7.3

4. First, we evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$. Parameterize S by

$$
\mathbf{X}(r, \theta)=\left(r \cos \theta, r \sin \theta,-\sqrt{4-r^{2}}\right)
$$

where r goes from 0 to 2 and θ goes from 0 to 2π. The tangent vectors are

$$
\begin{gathered}
\mathbf{T}_{r}=\left(\cos \theta, \sin \theta, \frac{r}{\sqrt{4-r^{2}}}\right) \\
\mathbf{T}_{\theta}=(-r \sin \theta, r \cos \theta, 0)
\end{gathered}
$$

and the normal vector is

$$
\mathbf{T}_{\theta} \times \mathbf{T}_{r}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-r \sin \theta & r \cos \theta & 0 \\
\cos \theta & \sin \theta & \frac{r}{\sqrt{4-r^{2}}}
\end{array}\right|=\frac{r^{2}}{\sqrt{4-r^{2}}}(\cos \theta \mathbf{i}+\sin \theta \mathbf{j})-r \mathbf{k} .
$$

Notice that, since $r \geq 0$, the \mathbf{k} component of this normal vector is ≤ 0; we have the downward pointing normal.

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 y-z & x+y^{2}-z & 4 y-3 x
\end{array}\right|=5 \mathbf{i}+2 \mathbf{j}-\mathbf{k}
$$

Now we can integrate:

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} \int_{0}^{2}\left(\frac{r^{2}}{\sqrt{4-r^{2}}}(5 \cos \theta+2 \sin \theta)+r\right) d r d \theta \\
& =\int_{0}^{2 \pi}(5 \cos \theta+2 \sin \theta) d \theta \int_{0}^{2} \frac{r^{2}}{\sqrt{4-r^{2}}} d r+\int_{0}^{2 \pi} \int_{0}^{2} r d r d \theta \\
& =\left.(5 \sin \theta-2 \cos \theta)\right|_{0} ^{2 \pi} \int_{0}^{2} \frac{r^{2}}{\sqrt{4-r^{2}}} d r+2 \pi \int_{0}^{2} r d r \\
& =0 \int_{0}^{2} \frac{r^{2}}{\sqrt{4-r^{2}}} d r+\left.2 \pi\left(\frac{r^{2}}{2}\right)\right|_{0} ^{2}=4 \pi
\end{aligned}
$$

Next, calculate $\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}$. The appropriate orientation for ∂S is clockwise when viewed from the positive \mathbf{k} direction. A parameterization is

$$
\mathbf{x}(t)=(2 \cos t,-2 \sin t, 0)
$$

where t goes from 0 to 2π, and the tangent vector is

$$
\mathbf{x}^{\prime}(t)=(-2 \sin t,-2 \cos t, 0)
$$

The line integral comes out to

$$
\begin{aligned}
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s} & =\int_{\mathbf{x}}(2 y-z) d x+\left(x+y^{2}-z\right) d y+(4 y-3 x) d z \\
& =\int_{0}^{2 \pi} 2(-2 \sin t)(-2 \sin t) d t+\left(2 \cos t+4 \sin ^{2} t\right)(-2 \cos t) d t \\
& =\int_{0}^{2 \pi}\left(8 \sin ^{2} t-4 \cos ^{2} t-8 \sin ^{2} t \cos t\right) d t \\
& =\int_{0}^{2 \pi}(4(1-\cos 2 t)-2(1+\cos 2 t)) d t-8 \int_{0}^{2 \pi} \sin ^{2} t \cos t d t \\
& =\int_{0}^{2 \pi}(2-6 \cos 2 t) d t-8 \int_{0}^{2 \pi} \sin ^{2} t \cos t d t \\
& =\left.(2 t-3 \sin 2 t)\right|_{0} ^{2 \pi}-\left.\frac{8}{3} \sin ^{3} t\right|_{0} ^{2 \pi}=4 \pi
\end{aligned}
$$

The content of Stokes' theorem is that these two integrals are equal.
10. As suggested, consider a vector field $\mathbf{F}(x, y, z)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$, where M and N are scalar functions not depending on z. Suppose that D is a closed, bounded region in the $x y$-plane with boundary C and orient C so that D is on the left as as one traverses C. This is the correct orientation to apply Stokes' theorem if we choose the upward pointing normal for D. By Stokes' theorem,

$$
\begin{equation*}
\iint_{D} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{s}=\oint_{C} M d x+N d y \tag{1}
\end{equation*}
$$

Calculate the left hand side.

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & 0
\end{array}\right|=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
$$

(Remember that M and N do not depend on z, so $\frac{\partial N}{\partial z}$ and $\frac{\partial M}{\partial z}$ are 0 .) Using x and y as parameters for D, the tangent vectors are \mathbf{i} and \mathbf{j}, respectively, so the normal vector is $\mathbf{i} \times \mathbf{j}=\mathbf{k}$.

$$
\begin{align*}
\iint_{D} \nabla \times \mathbf{F} \cdot d \mathbf{S} & =\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k} \cdot \mathbf{k} d x d y \\
& =\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \tag{2}
\end{align*}
$$

Combining equations (1) and (2) we get Green's theorem:

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

16. Let D be the region in the plane $2 x-3 y+5 z=17$ enclosed by the curve C. Since the plane is a level set of the function $f(x, y, z)=2 x-3 y+5 z$, we can get a normal vector by taking the gradient:

$$
\mathbf{N}=\nabla f=2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}
$$

Notice that \mathbf{N} does not depend on x, y, or z. We want to compute $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$, where \mathbf{F} is the vector field

$$
(3 \cos x+z) \mathbf{i}+\left(5 x-e^{y}\right) \mathbf{j}-3 y \mathbf{k}
$$

Using Stokes' theorem we get

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot d \mathbf{s}=\iint_{D} \nabla \times \mathbf{F} \cdot d \mathbf{S} \\
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 \cos x+z & 5 x-e^{y} & -3 y
\end{array}\right|=-3 \mathbf{i}+\mathbf{j}+5 \mathbf{k}
\end{gathered}
$$

The unit normal vector to D is $\pm \frac{\mathbf{N}}{\|\mathbf{N}\|}$; the sign is determined by the orientation of C. Putting it all together,

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{s} & =\iint_{D} \nabla \times \mathbf{F} \cdot d \mathbf{S} \\
& = \pm \frac{1}{\|\mathbf{N}\|} \iint_{D}(-3 \mathbf{i}+\mathbf{j}+5 \mathbf{k}) \cdot(2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}) d S \\
& = \pm \frac{1}{\|\mathbf{N}\|} \iint_{D} 16 d S= \pm \frac{16}{\|\mathbf{N}\|}(\text { area of } D)
\end{aligned}
$$

DELA 2.1

T/F

4. F
5. F

Problems

6. A is a 3×3 matrix. The entries given are

$$
A=\left[\begin{array}{ll}
-1 & 2 \\
& 3
\end{array}\right]
$$

Using $a_{j i}=-a_{i j}$ we can get

$$
A=\left[\begin{array}{ccc}
& -1 & 2 \\
1 & & 3 \\
-2 & -3 &
\end{array}\right]
$$

The entries on the main diagonal have $i=j$. For these elements, $a_{i i}=-a_{i i}$, which means that $a_{i i}=0$. Thus, the whole matrix is

$$
A=\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & 3 \\
-2 & -3 & 0
\end{array}\right]
$$

14. We assemble B by writing $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$, and \mathbf{b}_{4} in its columns:

$$
B=\left[\begin{array}{cccc}
2 & 5 & 0 & 1 \\
-1 & 7 & 0 & 2 \\
4 & -6 & 0 & 3
\end{array}\right]
$$

The row vectors of B we get by reading horizontally:

$$
\left[\begin{array}{llll}
2 & 5 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{llll}
-1 & 7 & 0 & 2
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{llll}
4 & -6 & 0 & 3
\end{array}\right] .
$$

20. In order to be lower triangular, our matrix A needs zeros above the main diagonal.

$$
A=\left[\begin{array}{ll}
0 & 0 \\
& \\
&
\end{array}\right]
$$

To make A skew-symmetric, the entries below the main diagonal should be the negatives of those above:

$$
A=\left[\begin{array}{lll}
& 0 & 0 \\
0 & & 0 \\
0 & 0 &
\end{array}\right]
$$

Finally, a skew-symmetric matrix needs zeros on the main diagonal, since $a_{i i}=-a_{i i}$.

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So in fact this matrix of zeros is the only 3×3 lower triangular skew-symmetric matrix.
22. A good example of a function that hits the same value twice but not three times is a quadratic function. If $f(t)=t(t-1)$ then $f(0)=f(1) \neq f(2)$, since $f(0)$ and $f(1)$ are 0 and quadratic functions have no more than 2 roots. Any constant multiple of f will have this same property. So for A we could pick

$$
A=\left[\begin{array}{ccc}
t(t-1) & 2 t(t-1) & 3 t(t-1) \\
4 t(t-1) & 5 t(t-1) & 6 t(t-1) \\
7 t(t-1) & 8 t(t-1) & 9 t(t-1)
\end{array}\right]
$$

DELA 2.2

T/F
4. F

Problems

2. If $2 A+B-3 C+2 D=A+4 C$, then we can rearrange to get

$$
D=\frac{1}{2}(-A-B+7 C) .
$$

Now, substitute the given matrices for A, B, and C and simplify:

$$
\begin{aligned}
D & =\frac{1}{2}(-A-B+7 C) \\
& =\frac{1}{2}\left(-\left[\begin{array}{ccc}
2 & -1 & 0 \\
3 & 1 & 2 \\
-1 & 1 & 1
\end{array}\right]-\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right]+7\left[\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 2 & 3 \\
-1 & 1 & 0
\end{array}\right]\right) \\
& =\frac{1}{2}\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
-3 & -1 & -2 \\
1 & -1 & -1
\end{array}\right]+\left[\begin{array}{ccc}
-1 & 1 & -2 \\
-3 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
-7 & -7 & 7 \\
7 & 14 & 21 \\
-7 & 7 & 0
\end{array}\right]\right) \\
& =\frac{1}{2}\left[\begin{array}{ccc}
-10 & -5 & 5 \\
1 & 13 & 18 \\
-5 & 5 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-5 & -\frac{5}{2} & \frac{5}{2} \\
\frac{1}{2} & \frac{13}{2} & 9 \\
-\frac{5}{2} & \frac{5}{2} & -\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

10. The vector $A \mathbf{c}$ is a linear combination of the column vectors of A. The coefficients of this linear combination are the entries of \mathbf{c}. The column vectors of A are

$$
\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
1 \\
-6
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{l}
4 \\
5 \\
3
\end{array}\right]
$$

Now we can compute

$$
\begin{aligned}
A \mathbf{c} & =2\left[\begin{array}{l}
3 \\
2 \\
7
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
1 \\
-6
\end{array}\right]-4\left[\begin{array}{l}
4 \\
5 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
6 \\
4 \\
14
\end{array}\right]+\left[\begin{array}{c}
-3 \\
3 \\
-18
\end{array}\right]+\left[\begin{array}{l}
-16 \\
-20 \\
-12
\end{array}\right] \\
& =\left[\begin{array}{l}
-13 \\
-13 \\
-16
\end{array}\right] .
\end{aligned}
$$

24. If A and C are $m \times n$ matrices, we aim to prove that

$$
\begin{equation*}
\left(A^{T}\right)^{T}=A \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(A+C)^{T}=A^{T}+C^{T} \tag{2}
\end{equation*}
$$

Let $a_{i j}$ be the entries of the matrix A, with $1 \leq i \leq m$ and $1 \leq j \leq n$, and let $c_{i j}$ be the entries of C.

To prove (1), let $B=A^{T}$. Since A is $m \times n$, it follows that B is $n \times m$. If $b_{i j}$ are the entries of B, with $1 \leq i \leq n$ and $1 \leq j \leq m$, then $b_{i j}=a_{j i}$. Now, let $D=B^{T}$, so that $D=\left(A^{T}\right)^{T}$. The matrix B is $n \times m$, so D will be $m \times n$. The entries of D are $d_{i j}=b_{j i}$, with $1 \leq i \leq m$ and $1 \leq j \leq n$. The dimensions of D and A are the same - both are $m \times n$ matrices. Furthermore, $d_{i j}=b_{j i}=a_{i j}$, so we can conclude that $D=A$, that is, we have proved (1).

Let's move on to (2). If $E=A+C$ and $e_{i j}$ are its entries then $e_{i j}=a_{i j}+c_{i j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. Its transpose is the $n \times m$ matrix with entries $e_{j i}$. On the other hand, the entries of A^{T} and C^{T} are $a_{j i}$ and $c_{j i}$, respectively, so the entries of $F=A^{T}+C^{T}$ are $f_{i j}=a_{j i}+c_{j i}$. Since A and C are $m \times n$ matrices, A^{T}, C^{T} and F are $n \times m$. For a start the dimensions of E^{T} agree with those of F. As for the entries, $f_{i j}=a_{j i}+c_{j i}=e_{j i}$, so we conclude that $F=E^{T}$, which proves (2).
36. (a) In order for $A A^{T}$ to be symmetric we need $\left(A A^{T}\right)^{T}=A A^{T}$. Well, part (3) of Theorem 2.2.21 tells us that

$$
\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}
$$

and then we can use part (1) to get

$$
\left(A^{T}\right)^{T} A^{T}=A A^{T}
$$

(b) To show $(A B C)^{T}=C^{T} B^{T} C^{T}$, use part (3) of Theorem 2.2.21 twice:

$$
(A B C)^{T}=C^{T}(A B)^{T}=C^{T} B^{T} A^{T}
$$

38. To differentiate a matrix function, take the derivative of each entry:

$$
\begin{gathered}
\frac{d}{d t} t=1 \\
\frac{d}{d t} \sin t=\cos t \\
\frac{d}{d t} \cos t=-\sin t, \text { and } \\
\frac{d}{d t} 4 t=4
\end{gathered}
$$

Thus,

$$
\frac{d A}{d t}=\left[\begin{array}{cc}
1 & \cos t \\
-\sin t & 4
\end{array}\right] .
$$

42. We integrate each entry of the matrix function:

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \cos t d t=\left.\sin t\right|_{0} ^{\frac{\pi}{2}}=1 \quad \text { and } \\
\int_{0}^{\frac{\pi}{2}} \sin t d t=-\left.\cos t\right|_{0} ^{\frac{\pi}{2}}=1
\end{gathered}
$$

so the integral of A is

$$
\int_{0}^{\frac{\pi}{2}} A(t) d t=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

