
Solutions – Homework 3 Math 240, Fall 2012

VC 7.3

4. First, we evaluate
∫∫

S
∇× F · dS. Parameterize S by

X(r, θ) =
(
r cos θ, r sin θ, −

√
4− r2

)
where r goes from 0 to 2 and θ goes from 0 to 2π. The tangent vectors are

Tr =

(
cos θ, sin θ,

r√
4− r2

)
Tθ = (−r sin θ, r cos θ, 0)

and the normal vector is

Tθ ×Tr =

∣∣∣∣∣∣
i j k

−r sin θ r cos θ 0
cos θ sin θ r√

4−r2

∣∣∣∣∣∣ =
r2√

4− r2
(cos θ i + sin θ j)− rk.

Notice that, since r ≥ 0, the k component of this normal vector is ≤ 0; we have the
downward pointing normal.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2y − z x+ y2 − z 4y − 3x

∣∣∣∣∣∣ = 5i + 2j− k

Now we can integrate:∫∫
S

∇× F · dS =

∫ 2π

0

∫ 2

0

(
r2√

4− r2
(5 cos θ + 2 sin θ) + r

)
dr dθ

=

∫ 2π

0

(5 cos θ + 2 sin θ) dθ

∫ 2

0

r2√
4− r2

dr +

∫ 2π

0

∫ 2

0

r dr dθ

= (5 sin θ − 2 cos θ)
∣∣2π
0

∫ 2

0

r2√
4− r2

dr + 2π

∫ 2

0

r dr

= 0

∫ 2

0

r2√
4− r2

dr + 2π

(
r2

2

)∣∣∣2
0

= 4π.

Next, calculate
∮
∂S

F · ds. The appropriate orientation for ∂S is clockwise when
viewed from the positive k direction. A parameterization is

x(t) = (2 cos t, −2 sin t, 0) ,

where t goes from 0 to 2π, and the tangent vector is

x′(t) = (−2 sin t, −2 cos t, 0) .



The line integral comes out to∮
∂S

F · ds =

∫
x

(2y − z) dx+ (x+ y2 − z) dy + (4y − 3x) dz

=

∫ 2π

0

2(−2 sin t)(−2 sin t) dt+ (2 cos t+ 4 sin2 t)(−2 cos t) dt

=

∫ 2π

0

(
8 sin2 t− 4 cos2 t− 8 sin2 t cos t

)
dt

=

∫ 2π

0

(4(1− cos 2t)− 2(1 + cos 2t)) dt− 8

∫ 2π

0

sin2 t cos t dt

=

∫ 2π

0

(2− 6 cos 2t) dt− 8

∫ 2π

0

sin2 t cos t dt

= (2t− 3 sin 2t)
∣∣2π
0
− 8

3
sin3 t

∣∣2π
0

= 4π.

The content of Stokes’ theorem is that these two integrals are equal.

10. As suggested, consider a vector field F(x, y, z) = M(x, y)i+N(x, y)j, where M and N
are scalar functions not depending on z. Suppose that D is a closed, bounded region in
the xy-plane with boundary C and orient C so that D is on the left as as one traverses
C. This is the correct orientation to apply Stokes’ theorem if we choose the upward
pointing normal for D. By Stokes’ theorem,∫∫

D

∇× F · dS =

∮
C

F · ds =

∮
C

M dx+N dy. (1)

Calculate the left hand side.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

M N 0

∣∣∣∣∣∣ =

(
∂N

∂x
− ∂M

∂y

)
k

(Remember that M and N do not depend on z, so ∂N
∂z

and ∂M
∂z

are 0.) Using x and y
as parameters for D, the tangent vectors are i and j, respectively, so the normal vector
is i× j = k. ∫∫

D

∇× F · dS =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
k · k dx dy

=

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dx dy (2)

Combining equations (1) and (2) we get Green’s theorem:∮
C

M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dx dy.

16. Let D be the region in the plane 2x − 3y + 5z = 17 enclosed by the curve C. Since
the plane is a level set of the function f(x, y, z) = 2x − 3y + 5z, we can get a normal
vector by taking the gradient:

N = ∇f = 2i− 3j + 5k.



Notice that N does not depend on x, y, or z. We want to compute
∮
C
F · ds, where F

is the vector field
(3 cosx+ z) i + (5x− ey) j− 3y k.

Using Stokes’ theorem we get∮
C

F · ds =

∫∫
D

∇× F · dS.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

3 cosx+ z 5x− ey −3y

∣∣∣∣∣∣ = −3i + j + 5k

The unit normal vector to D is ± N
‖N‖ ; the sign is determined by the orientation of C.

Putting it all together,∮
C

F · ds =

∫∫
D

∇× F · dS

= ± 1

‖N‖

∫∫
D

(−3i + j + 5k) · (2i− 3j + 5k) dS

= ± 1

‖N‖

∫∫
D

16 dS = ± 16

‖N‖
(area of D) .
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Problems

6. A is a 3× 3 matrix. The entries given are

A =

 −1 2
3

 .
Using aji = −aij we can get

A =

 −1 2
1 3
−2 −3

 .
The entries on the main diagonal have i = j. For these elements, aii = −aii, which
means that aii = 0. Thus, the whole matrix is

A =

 0 −1 2
1 0 3
−2 −3 0

 .



14. We assemble B by writing b1, b2, b3, and b4 in its columns:

B =

 2 5 0 1
−1 7 0 2
4 −6 0 3

 .
The row vectors of B we get by reading horizontally:

[2 5 0 1], [−1 7 0 2], and [4 −6 0 3].

20. In order to be lower triangular, our matrix A needs zeros above the main diagonal.

A =

 0 0
0


To make A skew-symmetric, the entries below the main diagonal should be the nega-
tives of those above:

A =

 0 0
0 0
0 0


Finally, a skew-symmetric matrix needs zeros on the main diagonal, since aii = −aii.

A =

0 0 0
0 0 0
0 0 0


So in fact this matrix of zeros is the only 3×3 lower triangular skew-symmetric matrix.

22. A good example of a function that hits the same value twice but not three times is a
quadratic function. If f(t) = t(t− 1) then f(0) = f(1) 6= f(2), since f(0) and f(1) are
0 and quadratic functions have no more than 2 roots. Any constant multiple of f will
have this same property. So for A we could pick

A =

 t(t− 1) 2t(t− 1) 3t(t− 1)
4t(t− 1) 5t(t− 1) 6t(t− 1)
7t(t− 1) 8t(t− 1) 9t(t− 1)

 .
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Problems

2. If 2A+B − 3C + 2D = A+ 4C, then we can rearrange to get

D = 1
2
(−A−B + 7C).

Now, substitute the given matrices for A, B, and C and simplify:

D = 1
2
(−A−B + 7C)

=
1

2

−
 2 −1 0

3 1 2
−1 1 1

−
 1 −1 2

3 0 1
−1 1 0

+ 7

−1 −1 1
1 2 3
−1 1 0


=

1

2

−2 1 0
−3 −1 −2
1 −1 −1

+

−1 1 −2
−3 0 −1
1 −1 0

+

−7 −7 7
7 14 21
−7 7 0


=

1

2

−10 −5 5
1 13 18
−5 5 −1

 =

−5 −5
2

5
2

1
2

13
2

9
−5

2
5
2
−1

2


10. The vector Ac is a linear combination of the column vectors of A. The coefficients of

this linear combination are the entries of c. The column vectors of A are3
2
7

 ,
−1

1
−6

 , and

4
5
3

 .
Now we can compute

Ac = 2

3
2
7

+ 3

−1
1
−6

− 4

4
5
3


=

 6
4
14

+

 −3
3
−18

+

−16
−20
−12


=

−13
−13
−16

 .
24. If A and C are m× n matrices, we aim to prove that(

AT
)T

= A (1)

and
(A+ C)T = AT + CT . (2)

Let aij be the entries of the matrix A, with 1 ≤ i ≤ m and 1 ≤ j ≤ n, and let cij be
the entries of C.



To prove (1), let B = AT . Since A is m× n, it follows that B is n×m. If bij are
the entries of B, with 1 ≤ i ≤ n and 1 ≤ j ≤ m, then bij = aji. Now, let D = BT ,

so that D =
(
AT
)T

. The matrix B is n ×m, so D will be m × n. The entries of D
are dij = bji, with 1 ≤ i ≤ m and 1 ≤ j ≤ n. The dimensions of D and A are the
same—both are m×n matrices. Furthermore, dij = bji = aij, so we can conclude that
D = A, that is, we have proved (1).

Let’s move on to (2). If E = A + C and eij are its entries then eij = aij + cij for
1 ≤ i ≤ m and 1 ≤ j ≤ n. Its transpose is the n × m matrix with entries eji. On
the other hand, the entries of AT and CT are aji and cji, respectively, so the entries of
F = AT + CT are fij = aji + cji. Since A and C are m × n matrices, AT , CT and F
are n×m. For a start the dimensions of ET agree with those of F . As for the entries,
fij = aji + cji = eji, so we conclude that F = ET , which proves (2).

36. (a) In order for AAT to be symmetric we need
(
AAT

)T
= AAT . Well, part (3) of

Theorem 2.2.21 tells us that (
AAT

)T
=
(
AT
)T
AT

and then we can use part (1) to get(
AT
)T
AT = AAT .

(b) To show (ABC)T = CTBTCT , use part (3) of Theorem 2.2.21 twice:

(ABC)T = CT (AB)T = CTBTAT .

38. To differentiate a matrix function, take the derivative of each entry:

d

dt
t = 1,

d

dt
sin t = cos t,

d

dt
cos t = − sin t, and

d

dt
4t = 4.

Thus,
dA

dt
=

[
1 cos t

− sin t 4

]
.

42. We integrate each entry of the matrix function:∫ π
2

0

cos t dt = sin t
∣∣π2
0

= 1 and∫ π
2

0

sin t dt = − cos t
∣∣π2
0

= 1,

so the integral of A is ∫ π
2

0

A(t) dt =

[
1
1

]
.


