
last edited April 30, 2016

6 Number Theory II: Modular Arithmetic,
Cryptography, and Randomness

For hundreds of years, number theory was among the least practical of math-
ematical disciplines. In contrast to subjects such as arithmetic and geometry,
which proved useful in everyday problems in commerce and architecture, as-
tronomy, mechanics, and countless other areas, number theory studies very ab-
stract ideas called numbers, and applications of the subject are not immediate.
Over the course of the second half of the twentieth century, however, number
theory became increasingly more applicable, and today make possible a wide
range of technologies. In this section we will consider modular arithmetic
and applications to cryptography and to generating “random numbers” by
deterministic computers.

6.1 Introduction to Cryptography

Since ancient times, people desiring to transmit messages privately have devised
methods of encoding messages, so that no person but the intended recipient
could read the message. The ability to successfully encode and decode messages
has played a central role in the development of financial markets and in history-
altering military turnarounds. We use cryptography to refer to the study of
how information can be made secretive enough so that bad people can’t read
it, yet still accessible enough so that good guys can. Cryptography is a very
exciting and developing area of contemporary mathematics, with connections
to number theory and computational complexity.

Let us consider a person Alice who would like to send a secret message to
another person Bob. Perhaps Alice and Bob are childhood friends and are plan-
ning a surprise birthday party for a mutual friend. Or perhaps Alice and Bob
have never met, but Alice would would like to send Bob her credit card informa-
tion so she can pay for something Bob is selling. In both cases, Alice and Bob
would like to guarantee several things: (a) Alice would like to ascertain that
Bob has received her message; (b) both Alice and Bob would like to know that
no one else has seen the secret message; (c) Bob would like to ascertain that
the message he believes to have come from Alice has indeed come from Alice.
It is not immediately clear how we can guarantee each of these except in the
case where Alice and Bob actually meet up and Alice whispers the message into
Bob’s ear. What should they do, however, if they are far apart? If they send a
message through the postal service, there is a small chance that (notwithstand-
ing the serious federal crime involved in opening someone else’s mail) that an
eavesdropper might intercept the message before it reaches Bob. Even if they
use the telephone, or an email, or a text, there is a chance that the intended
message and information will make its way to the wrong hands. These kinds
of questions motivate the need to develop methods of encoding and decoding
information so that messages can be communicated securely.

70



last edited April 30, 2016

We briefly note several methods used to solve some of the above problems.
Bob can send back a note saying “I received your message”, though the same
security concerns relevant to the initial message will be relevant here as well.
Signing one’s signature to a piece of a paper is a relatively simple way in which
Alice can convince that the message indeed came from her. This is partly
because while reading and identifying a signature is relatively easy, actually
creating it is complicated, for all except the person signing it (though of course
signatures can be forged). In this section, we will focus mostly on the problem
(b), that is, how can we ensure that no eavesdropper can read the message
intended solely for Bob.

Simple ways of encoding messages were known since antiquity. Sometimes
letters were switched for other letters, or for numbers, and so an eavesdropper
quickly looking at an encoded message would only see gibberish. However, this
approach has many limitation. For starters, how would Alice communicate to
Bob the scheme which she used to encode the message and which he, conse-
quently, will need to decode it? If he can determine this by himself, perhaps
through some guesswork, then what would stop someone else from doing the
same? Many somewhat sophisticated methods have been developed over the
centuries for encoding and decoding secret messages, though in this section we
will focus on one that is built on what is called modular arithmetic, a system
of arithmetic that in some sense only has a finite number of numbers.

71



last edited April 30, 2016

6.2 Modular Arithmetic

Every reader is familiar with arithmetic from the time they are three or four
years old. It is the study of numbers and various ways in which we can combine
them, such as through addition and subtraction, multiplication and division.
Since even before they were in grade school, every reader knew that adding 2
and 2 together gives us 4, and can make that calculation now without almost
any thinking. And even if the answer is not immediately obvious, every college
student (at least in Penn), knows how to add together much larger numbers,
such as 4,378,123 and 5,621,877. This is classical arithmetic, and it turns up in
countless applications in our everyday lives.

The reader is also likely familiar with another kind of arithmetic, even if we
don’t always think of it as such. If it is 4 o’clock now, what will the time be
in 25 hours? If we didn’t know from watches and clocks, we would probably
have answered 29 o’clock. But we are familiar with watches, clocks, and the
standard conventions of time-keeping, and so every reader would probably have
answered the answer with 5 o’clock. How can we add 25 to 4 and end up with
5? The reason is that in this system 25 o’clock is the same as 1 o’clock, 26 is
the same as 2, and so forth. In many time-keeping systems, we don’t even use
numbers larger than 12, and instead use a.m. and p.m. (from the Latin ante

meridiem and post meridiem) to denote the earlier and latter halves of a 24-hour
period. Such systems, that “wrap around” after hitting some limit, are called
modular arithmetic systems, and play an important role both in theoretical
and applied mathematics.

Modular arithmetic motivates many questions that don’t arise when study-
ing classic arithmetic. For example, in classic arithmetic, adding a positive
number a to another number b always produces a number larger than b. In
modular arithmetic this is not always so. For example, if it is now 4 o’clock and
we “add” 23 hours, the time will then be 3 o’clock, which doesn’t appear to be
larger than 4 o’clock. In fact, it is no longer clear whether it makes sense at all
to discuss “larger” and “smaller” in such systems.

Here is another question. Suppose it is now 2 o’clock and we wait for 1 hour
and then write down the time. We then wait another hour and mark the time,
and repeat this until we eventually mark 2 o’clock again, at which point we
stop. It is clear that when we stop, we will have marked down every hour. If we
do the same thing but instead wait 2 or 3 hours in between each marking there
will be certain hours which we never mark, such as 7 o’clock. But if we wait
5 hours between each marking, then we will eventually mark every hour. This
raises the question, for which waiting intervals between marks can we ensure
that we will eventually mark every hour?

While this particular example may seem contrived, it should motivate us
think, if even momentarily, about modular arithmetic systems and the ways in
which they are similar to and di↵erent from the classical arithmetic with which
we are familiar. The next several sections will investigate these systems which
have a finite number of numbers, and in which numbers “wrap around” after
going too high.

72



last edited April 30, 2016

The central definition in studying modular arithmetic systems establishes a
relationship between pairs of numbers with respect to a special number m called
the modulus:

Definition 25. Two integers a and b are congruent modulo m if they di↵er

by an integer multiple of m, i.e., b� a = km for some k 2 Z. This equivalence

is written a ⌘ b (mod m).

Although this definition looks somewhat technical, the idea is very simple.
For some fixed integer m, two numbers are roughly the same if they di↵er by
multiples of m. In a sense, this definition generalizes previous discussions of
odd and even numbers. In previous sections, we proved theorems such as the
square of an even number is even and the square of odd number is odd. As
far as even and odds numbers go, and as far as these theorems are concerned,
there is no di↵erence between 17 and 2073, as both are odd and behave the
same under squaring. In a similar manner, in modular arithmetic, there is no
di↵erence between a pair of numbers that di↵er by the modulus m, which could
be 2 or could be 15,485,863. In arithmetic mod 7, for example, there is no
di↵erence between 1, 8, and 15, as they all di↵er from one another by multiples
of 7. Likewise, 22, 701 and -6 also di↵er from all of these numbers by multiples
of 7, and are hence congruent.

Example 1. Every number is congruent to itself for any modulus; that is, a ⌘ a
(mod m) for any a,m 2 Z. The reason for this is that a � a = 0, which is a
multiple of m, since 0 = 0 ⇥ m for any m. It might seem a bit silly, but is a
consequence of the way in which we defined congruence.

Example 2. Every number is congruent to any other number mod 1; that is,
a ⌘ b (mod 1) for any a, b 2 Z. The reason for this is that b � a, is a multiple
of 1 for any a and b. Again, this might seem a bit silly, but is a consequence of
the way in which we defined congruence.

Example 3. Any even numbers are congruent to one another mod 2; likewise,
any odd numbers are congruent to one another mod 2. For example, we have
12 ⌘ 3132 (mod 2) and �7 ⌘ 19 (mod 3). This is because any pair of even
numbers di↵er from one another by a multiple of 2. Likewise, any pair of odd
numbers di↵er from one another by a multiple of 2.

Example 4. The numbers 31 and 46 are congruent mod 3 because they di↵er
by a multiple of 3. We can write this as 31 ⌘ 46 (mod 3). Since the di↵erence
between 31 and 46 is 15, then these numbers also di↵er by a multiple of 5; i.e.,
31 ⌘ 46 (mod 5).

Example 5. By the definition of congruence, every pair of integers a and b are
congruent mod 1, since any pair of integers di↵er by a multiple of 1. In symbols,
for all integers a and b, we have a ⌘ b (mod 1).

Example 6. In general it is not true that a ⌘ �a (mod m), unless m = 2 or
else a is a multiple of 2. For example, it is not true that 7 ⌘ �7 (mod 3), since
the di↵erence between 7 and -7 is 14, which is not a multiple of 3.

73



last edited April 30, 2016

Rules of Modular Arithmetic

After considering the basic definition of modular arithmetic, we next consider
some of its basic properties. It turns out that modular arithmetic follows many
of the same rules of classical arithmetic, thus making it very easy to work with.
In order to highlight what is going on, we try to compare and contrast modular
arithmetic to classical arithmetic.

Suppose we have two numbers a and b:

a = 5

b = 8.

We all know that in classical arithmetic we can combine these equations to
obtain:

a+ b = 5 + 8 = 13.

More generally, if we have

a = c

b = d,

then we can combine them in many di↵erent ways, to obtain:

a+ b = c+ d,

a� b = c� d,

a⇥ b = c⇥ d.

Pause to think about this statement, and make sure it aligns with what you
know. Of course these are only several ways of combining these equations, and
every reader can think of several others. All of the above are “rules” of classical
arithmetic. What we would like to do now is consider whether similar rules
apply to modular arithmetic as well.

Suppose we have the following two congruence relations:

a ⌘ b (mod m)

c ⌘ d (mod m).

Are we able to combine these to obtain

a+ b ⌘ c+ d (mod m),

a� b ⌘ c� d (mod m),

a⇥ b ⌘ c⇥ d (mod m)?

That is, do the rules that govern how we can combine equations in classical
arithmetic also govern the ways in which we combine statements in modular
arithmetic? In what follows we prove that indeed many of the rules do carry
over – the rules of modular arithmetic will be familiar to us.

74



last edited April 30, 2016

Addition

The first rule we consider is that associated with addition. Suppose we have
two congruence relations: a ⌘ b (mod m) and c ⌘ d (mod m). In other words,
a and b are congruent and c and d are congruent, both mod m. We can add the
left sides of these congruent relations, add the right sides, and the results will
again be congruent. In symbols,

Theorem 15.

If a ⌘ b (mod m) and

c ⌘ d (mod m), then

a+ c ⌘ b+ d (mod m).

Proving this result involves nothing more than applying the definition of
congruence and some basic algebraic manipulation.

Proof. By the definition of congruence (Definition 25) we know that a and b
di↵er by some multiple of m, i.e.,

b� a = km (64)

for some k 2 Z. Likewise we know that c and d also di↵er by some multiple of
m, i.e.,

d� c = jm (65)

for some j 2 Z. Note that we use j instead of k since the multiple of m by which
c and d di↵er might be di↵erent from the multiple by which a and b di↵er. Next
we add these two equations together:

(b� a) + (d� c) = km+ jm. (66)

We can rewrite this equation as

(b+ d)� (a+ c) = (j + k)m. (67)

By the definition of congruence modulo m, this is the same as saying that a+ c
is congruent to b+d modulo m, since a+c and b+d di↵er by an integer multiple
(j + k) of m. In symbols, we have:

a+ c ⌘ b+ d (mod m), (68)

as desired.

A similar proof can be used to show that if a ⌘ b (mod m) and c ⌘ d
(mod m), then a� c ⌘ b� d (mod m).

These two results allow us to treat all numbers that are congruent modulo
m as identical when adding and subtracting numbers. If we know that a ⌘ 3
(mod 7) and b ⌘ 4 (mod 7), then we can know that a + b ⌘ 7 ⌘ 0 (mod 7).
This is true whether a is 10 or 703, and whether b is 7004, 10000, or 7,000,004.
What a and b actually are does not matter if we only want to determine whether
a+ b is congruent to 0 or not.

75



last edited April 30, 2016

Multiplication

After understanding how addition and subtraction work in modular arithmetic,
we turn our attention to understanding multiplication. In classical arithmetic,
if a = 2 and b = 5, then of course a⇥b = 2⇥5 = 10. Does a similar relationship
also hold in modular arithmetic? In particular, if we know that a ⌘ 2 (mod m)
and b ⌘ 5 (mod m), do we know that a⇥ b ⌘ 2⇥ 5 (mod m)?

The following theorem answers this question a�rmatively.

Theorem 16.

If a ⌘ b (mod m) and

c ⌘ d (mod m), then

a⇥ c ⌘ b⇥ d (mod m).

Proof. By the definition of congruence we know that a and b di↵er by a multiple
of m, as do c and d:

b� a = jm

d� c = km

for some j, k 2 Z. Note that we use distinct multiples j and k for the two
equations, since a and b might di↵er by one multiple of m, and c and d might
di↵er by another multiple of m.

To prove the desired result, we rearrange the equations:

b = jm+ a

d = km+ c

We multiply both sides by each other to obtain

bd = (jm+ a)(km+ c)

= jkm2 + jmc+ kma+ ac

= (jkm+ jc+ ka)m+ ac.

We then subtract ac from both sides to obtain

bd� ac = (jkm+ jc+ ka)m.

Since (jkm+ jc+ ka)m is an integer multiple of m, then ac and bd di↵er by an
integer multiple of m, and so by definition are congruent mod m.

Example 1. If we know that a ⌘ 3 (mod 7) and we know that b ⌘ 4 (mod 7),
then we can determine that ab ⌘ 12 ⌘ 5 (mod 7). This is true whether a is
10, 703, or 7,000,003 and whether b is 7004 or 10000. In any of these cases, the
product ab will be congruent to 5 modulo 7.

76



last edited April 30, 2016

Example 2. How can we simplify 20 ⇥ 21 in arithmetic modulo 19? We first
note that 20 ⌘ 1 (mod 19) and also that 21 ⌘ 2 (mod 19). Theorem 16 tells us
that we can combine these equations to obtain 20⇥ 21 ⌘ 1⇥ 2 ⌘ 2 (mod 19).

Example 3. Can we simplify 17753 in arithmetic modulo 9? We first note that
17 ⌘ �1 (mod 9), because 17 and -1 di↵er by a multiple of 9. Theorem 16 allows
us to then combine this congruence relation as many times as we would like. In
particular, by combining 753 copies, we obtain 17753 ⌘ (�1)753 (mod 9). Since
(�1)n = �1 for any odd integer n, we have 17753 ⌘ �1 (mod 9). Finally, if we
would like to have a simple, positive answer, then we can add 9 to obtain a final
answer of 8.

Theorems 15 and 16 show us that we can treat all numbers that are congruent
modulo m as the same, in addition and in multiplication operations. Division
is much more complicated, and will not be discussed.

Remainders

We take a moment to draw out a connection to division with remainders, an idea
we considered briefly in Section 4.1. In particular, back in elementary school we
learned about a way of dividing integers by other integers that entirely avoids
decimals and fractions. In particular, suppose we divide 7 by 4. In third, fourth,
or fifth grade, we learned that we can write this as 1, remainder 3. That is, 4 can
1 time “into” 7, leaving over 3. As we got older, we learned that we could also
write the answer as 1.75 or 13⁄4, but we still occasionally deal with situations
in which discussing fractions would be silly. If we have 52 playing cards and 5
players, a dealer could give each player 10 cards and then be left with 2 cards.
It makes little sense to say that the dealer should give each player 10.2, or 10
and a fifth, cards.

What is the connection of modular arithmetic to division with remainders?
Suppose that we divide some integer a by another integer m. Notice that the
“remainder” is always congruent to a modulo m. For example, suppose we
divide 1031 by 19. We obtain 54, remainder 5. This tells us that 5 is congruent
to 1031 modulo 19. Likewise, since the remainder of 7381/57 is 28, we know
that 28 ⌘ 7381 (mod 57).

Why is the remainder after division always congruent to the number we are
dividing? One way to think about this is by considering how we can find a
remainder without actually doing any division. Suppose we want to know the
remainder of 11 after dividing by 3. We can subtract 3 over and over until we
obtain a number that is smaller than 3: 11, 8, 5, and eventually 2. Each time
we subtract 3, we are realizing that 3 can “go into” 11 one more time; whatever
is left at the end is the remainder. At the same time, we got from the original
number to the remainder by jumps of 3, so of course the di↵erence between 11
and 2 is divisible by 3, making 11 and 2 congruent. The same idea works for
dividing any number a with any other number m.

77



last edited April 30, 2016

Standard Representation

We have by now seen that in arithmetic modulom, there is no di↵erence between
writing 1, 1 +m, 1 + 2m, and so forth, at least as far as addition, subtraction,
and multiplication are concerned. For this reason, writing 4+11 ⌘ 15 (mod 13)
is “just as correct” as writing 4 + 11 ⌘ 2 (mod 13), and “just as correct” as
writing 4 + 11 ⌘ �11 (mod 13). As far as arithmetic modulo 13 is concerned,
2, 15, and -11 are exactly the same number. However, in some applications it
is convenient to agree upon a standard way to represent numbers. What is a
good way to do this? Which of {. . . , a� 2m, a�m, a, a+m, a+2m, . . .} should
we consider the standard representative?

You have likely encountered a similar problem back in your days learning
about trigonometric functions. A teacher may have asked you what is the inverse
sine of �1, i.e., sin�1(�1). You may have correctly answered 270�. Or you
may have correctly answered �90�. In fact, any number that can be written
270� + n360�, for any integer n 2 Z, would also be equally correct. But if
each student wrote a di↵erent number on an exam, it could take a long time to
determine whether or not every answer is correct. Is 1500� a correct solution?
Is 1530�? For this reason, we might specify that we looking for a correct answer
between 0� and 360�, or else between �180� and 180�, since there is exactly one
correct answer in each of these ranges.

In the same way, when working in arithmetic modulo 41, the numbers
{. . . ,�29, 12, 53, 94, 135, . . .} are all the same, yet we might hope to specify
one of them to be the standard representation of them. Indeed, in arithmetic
modulo m, we refer to the numbers {0, 1, 2, . . . ,m�1} as the standard repre-
sentations of the integers. If numbers are always represented in this standard
form, determining whether or not two numbers are congruent is as easy as look-
ing at whether the numbers are equal. Notice also that this set of numbers is
also the set of possible remainders after dividing a number by m.

Example 1. Suppose we want to know the remainder of 17 ⇥ 18 when it is
divided by 19. We can do this in two di↵erent ways. First, we can multiply
the two numbers directly and obtain 306; some calculation will show that 306 is
congruent to 2 modulo 19. Alternatively, we know that 17 ⌘ �2 (mod 19) and
18 ⌘ �1 (mod 19). Multiplying both sides we see that 17⇥18 ⌘ (�2)⇥(�1) ⌘ 2
(mod 19).

Example 2. Suppose we want to determine the standard form of 172 in mod
19 arithmetic. One way in which we can do this is by considering the square of
17, which is 289, divide that by 19 and then take the remainder. However, since
we know that 17 ⌘ �2 (mod 19), we can multiply this congruence equation
by itself to obtain 172 ⌘ �22 ⌘ 4 (mod 19). We can easily verify that the
remainder of 289, when divided by 17, is indeed 4.

Example 3. Suppose we want to determine the standard form of 18489391312

in mod 19 arithmetic. We should first notice that in mod 19 arithmetic, 18 is
congruent to �1, and so 18489391312 ⌘ (�1)489391312 (mod 19). It is relatively

78



last edited April 30, 2016

easy to see that if n is odd then (�1)n = �1, and if n is even then (�1)n = 1.
Since 489391312 is even, 18489391312 ⌘ 1 (mod 19).

Dividing by 9

We can use the rules of modular addition and multiplication to prove a theorem
you may have once seen. Suppose we have a number, for example 2,383,623,
and want to know whether it is divisible by 9. Is there an easy way to figure this
out without doing “long division”? You may have learned the following trick:
add up the digits of the number (e..g., 2 + 3 + 8 + 3 + 6 + 2 + 3 = 27). If this
sum is divisible by 9, then so is the original number; if the sum is not divisible
by 9, then neither is the original number. Is this just a miraculous trick, or is
it something that we can prove should work?

The rules of modular addition and multiplication (Theorems 15 and 16
above) can help us prove this beautiful result. Let’s begin by proving a sim-
pler result about the remainders we get when we divide powers of 10 by 9. In
particular, the remainder is always 1.

Lemma 17. For any natural number n, we have 10n ⌘ 1 (mod 9).

Proof. Recall that if we have two congruences: a ⌘ b and c ⌘ d (mod m), then
we can combine them to form a new congruence relation: ac ⌘ bd (mod m).
Since 10 ⌘ 1 (mod 9), then we can combine the equation with itself to obtain
100 = 10⇥ 10 ⌘ 1⇥ 1 ⌘ 1 (mod 9). We can indeed combine this equation with
itself as many times as we want (e.g., n times), and therefore have 10n ⌘ 1n ⌘ 1
(mod 9) for any natural number n.

Next, let’s consider what happens when we divide numbers such as 300,
5000, and 2,000,000 by 9. What are the remainders? Theorem 16 can help us
see that the remainders are 3, 5, and 2 in these examples. To see why this is so,
notice that each of these numbers can be written as the product of an integer
and a power of 10: 300 = 3 · 102, 5000 = 5 · 103, and 2,000,000= 2 · 106. This
leads us to the following theorem.

Lemma 18. For any natural numbers c and n, we have c · 10n ⌘ c (mod 9).

Proof. Recall that if we have two congruences: a ⌘ b and c ⌘ d (mod m), then
we can combine them to form a new congruence relation: ac ⌘ bd (mod m).
Since c ⌘ c and 10n ⌘ 1 (mod 9) for any n, then we can combine the equations
to obtain c · 10n ⌘ c · 1 ⌘ c (mod 9).

This now leads us to our central theorem:

Theorem 19. A number is divisible by 9 if and only if the sum of its digits

(written in base 10) is divisible by 9.

Proof. In base 10, every number can be written as a sum of ones, tens, hundreds,
thousands, and so forth. For example, 5776 = 5000+700+70+6. More generally,
we can write this as n = c0 + c1101 + c2102 + c3103 + . . ., where the c

i

variables

79



last edited April 30, 2016

are the numbers of ones, tens, hundreds, thousands, and so forth. According to
Lemma 18, for each of the c

i

we have c
i

· 10n ⌘ c
i

(mod 9). Using Theorem 15,
we can combine the congruence relations

c0 ⌘ c0 (mod 9),

c1 ⌘ c110
1 (mod 9),

c2 ⌘ c210
2 (mod 9),

c3 ⌘ c210
3 (mod 9),

. . .

c
n

⌘ c210
n (mod 9),

to give us

c0 + c110
1 + c210

2 + . . . c
n

10n ⌘ c0 + c1 + c2 + . . . c
n

(mod 9) (69)

In other words, a number n is congruent to the sum of its digits in mod 9. If a
number is divisible by 9, i.e., n ⌘ 0 (mod 9), then so is the sum of its digits.

80



last edited April 30, 2016

6.3 Modular Exponentiation

Most technological applications of modular arithmetic involve exponentials with
very large numbers. For example, a typical problem related to encryption might
involve solving one of the following two equations:

6793032319 ⌘ a (mod 103969) (70)

67930b ⌘ 48560 (mod 103969). (71)

It turns out that a = 6582 and b = 32320 solve these equations, but those
answers are not obvious at all from looking at the equations. More importantly,
it is not even clear how we would go about determining a and b. In what is part
of a great mystery of the modern study of computational complexity, the first
equation is relatively easy for computers to solve, whereas there is no known
way of e�ciently solving the second problem. In this section we will look at
some problems involving modular exponentiation and some techniques we can
use to solve such problems.

Suppose we are asked to determine the remainder of the enormous number
1051239203 after dividing it by 5. This number has over 50 million digits! How
on earth can we hope to ever figure out such a di�cult problem without a
calculator that can hold more than 8 or even a few dozen digits? Although this
might appear impossible to solve, you might notice that 10 is divisible by 5,
and the enormous number is just a multiple of 10. If the remainder of 10 when
divided by 5 is 0, then so is any multiple of 10, including the enormous number.
Of course the answer would be the same if we were attempting to divide it by 2
instead, but what would happen if we divide it by 3, 7, or some other number?

Patterns

We begin by considering how to search for patterns among the remainders when
we taken a number to subsequently higher powers. For example, let us consider
the remainders of 10, 100, 1000, and so forth when we divide them by 3. The
first thing we notice is that the remainder of 10 after dividing it by 3 is 1. In
the language of modular arithmetic we can write:

101 ⌘ 1 (mod 3). (72)

The exponent next to the 10 is not necessary but we place it there to make
the next step slightly easier. Say that at this point we want to determine the
remainder of 100 after dividing it by 3. There are two ways we can go about
doing this. First, we can do simple arithmetic to determine that 100/3 equals 33,
remainder 1. Although this calculation is not terribly di�cult, we can actually
avoid it using a rule we saw in the previous section. Namely, if we have two
congruence relations, then we can combine them by multiplying both left-hand
sides and both right-hand sides to obtain a new congruence relation:

81



last edited April 30, 2016

Theorem.

If a ⌘ b (mod m) and

c ⌘ d (mod m), then

a⇥ c ⌘ b⇥ d (mod m).

In our particular case, we know that

101 ⌘ 1 (mod 3), and

101 ⌘ 1 (mod 3).

Of course these are the same equation, but writing them out in this way allows
us to think of them in terms of the previous theorem. More specifically, this
theorem allows us to multiply both sides of the equation together, to get:

101 ⇥ 101 ⌘ 1⇥ 1 (mod 3),

102 ⌘ 1 (mod 3).

We can then use the same technique, through induction, to show that all integer
powers of 10 are congruent to 1 mod 3, since we can continue multiplying our
resulting equation by the initial equation 101 ⌘ 1 (mod 3). In other words, all
positive integer powers of 10, when divided by 3, give us a remainder of 1!

We have chosen a relatively simple case to highlight the usefulness of The-
orem 2 for simplifying what might otherwise be very complicated calculations.
We now consider several more complex examples in which we can determine
patterns as we consider an (mod m) as n increases.

Example 1. Consider the very large number 71383921 and how we might de-
termine its remainder after dividing it by 4. Of course we know that the only
possible remainder are 0, 1, 2, and 3, but it is not clear how to determine which
of those it is. Simple calculations show the following pattern:

71 ⌘ 3 (mod 4),

72 ⌘ 1 (mod 4),

73 ⌘ 3 (mod 4),

74 ⌘ 1 (mod 4), . . .

It seems that if n is odd, then 7n ⌘ 3 (mod 4), and if n is even, then 7n ⌘ 1
(mod 4). We can prove that this pattern will repeat as n increases by noticing
that 72 ⌘ 1 (mod 4). Combining this with Theorem 16 shows that if 7n ⌘ 3
(mod 4) then 7n+2 ⌘ 3 (mod 4), and likewise if 7n ⌘ 1 (mod 4) then 7n+2 ⌘ 1
(mod 4). Therefore, the pattern repeats with a period of 2. Determining the
remainder of 71383921 when dividing by 4 is then straightforward – since the
exponent n = 1383921 is odd, the remainder must be 3.

Example 2. Let us consider the very large number 42349321230 and determine
its remainder after dividing it by 15. Of course we know that the only possible

82



last edited April 30, 2016

solutions are in {0, 1, 2, . . . , 14}, but that is still a wide range of options, and it
is not clear how to determine which of those it is. Simple calculations show the
following pattern:

41 ⌘ 4 (mod 15),

42 ⌘ 1 (mod 15),

43 ⌘ 4 (mod 15),

44 ⌘ 1 (mod 15), . . .

It seems that if the exponent n is odd, then 4n ⌘ 4 (mod 15), and if n is
even, then 4n ⌘ 1 (mod 15). This pattern too will repeat ad infinitum, because
in this case we have 42 ⌘ 1 (mod 15), and so increasing the exponent n by
2 will never change the remainder mod 15, and 4n ⌘ 4n+2 (mod 15) for all
exponents n. Determining the remainder of 42349321230 when dividing by 15 is
then straightforward – since the exponent n = 2349321230 is even, the remainder
must be 1.

Example 3. The particular patterns need not have a length of 2, and indeed
most of the time they don’t. Here we consider a repeating pattern with a slightly
longer period. Let us consider the very large number 730001 and determine its
remainder after dividing by 18. Simple calculations show the following pattern:

71 ⌘ 7 (mod 18),

72 ⌘ 13 (mod 18),

73 ⌘ 1 (mod 18),

74 ⌘ 7 (mod 18),

75 ⌘ 13 (mod 18),

76 ⌘ 1 (mod 18), . . .

Here the pattern repeats every 3, because 43 ⌘ 1 (mod 18) and so increasing
n by 3 will never change the remainder mod 18. Determining the remainder of
730001 when dividing by 18 then requires us to look at the exponent n = 30001.
Since adding and subtracting multiple of 3 from this number will not change
the remainder, we should subtract from it 30000, which of course is a multiple
of 3. We can then determine that 730001 ⌘ 71 ⌘ 7 (mod 18).

Example 4. Here we consider a repeating pattern with a period of 4. Let
us consider remainders of all numbers 5n after dividing them by 13. Simple
calculations show the following pattern:

51 ⌘ 5 (mod 13),

52 ⌘ 12 (mod 13),

53 ⌘ 8 (mod 13),

54 ⌘ 1 (mod 13),

55 ⌘ 5 (mod 13),

56 ⌘ 12 (mod 13), . . .

83



last edited April 30, 2016

Here the pattern repeats every 4 powers, since 54 ⌘ 1 (mod 13). Therefore,
increasing the exponent n by 4 will never change the remainder when dividing
by 13, and 5n ⌘ 5n+4 (mod 13) for all exponents n. Determining the remainder
of 5n when dividing by 13 then requires us to determine whether the exponent n
is divisible by 4. If it is divisible by 4, then the remainder must be 1. Otherwise,
if the remainder is 1, then 5n ⌘ 5 (mod 13); if the remainder is 2, then 5n ⌘ 12
(mod 13); and if the remainder is 3, then 5n ⌘ 8 (mod 13).

Maximum Length of Patterns

Every sequence of powers a1, a2, a3, . . . (mod m) eventually forms a repeating
pattern, though the length of these patterns can be significantly larger than 4.
Here we consider the question – how long can the period of such a pattern be?
So far we have seen patterns of periods 1, 2, 3, and 4. In all cases, the length
of the period was smaller than the modulus m. Was this coincidental? Can a
repeating pattern have a period longer than the modulus?

To see that the maximum length of a repeating pattern ism�1, we first point
out that there are onlym possible remainders when dividing bym: 0, 1, 2, . . .m�
1. Second, we note that if 0 appears anywhere in the pattern, then all subsequent
remainders must be 0. To understand why this is true, consider a number a and
some power n for which

an ⌘ 0 (mod m). (73)

The next number in the pattern is the remainder of an+1 after dividing it by
m. Of course it is always true that

a ⌘ a (mod m), (74)

since a number is always congruent to itself. Theorem 16, which we have already
seen several times, allows us to combine these two equations to obtain:

an ⇥ a ⌘ 0⇥ a (mod m),

and so
an+1 ⌘ 0 (mod m).

The same technique can be used to show that an+2, an+3, . . . are all congruent
to 0 mod m, and so all subsequent powers must be congruent to 0.

Therefore, a repeating pattern that does not consist merely of 0’s can only
contain the m� 1 distinct numbers: 1, 2, . . .m� 1. Next, it is easy to see that
any of these m� 1 numbers can appear at most once in a repeating pattern. It
is not possible, for example, to have a repeating pattern 2, 3, 2, 1 that repeats
itself over and over. Why not? Each consecutive term in the sequence can be
calculated from the term before it, by multiplying it by a. If we multiply 2
by a, the result can either be 3 or it can be 1, but it can’t be both. So if 2 is
followed by 3 in the pattern, then it must always be followed by 3, and it cannot
sometimes be followed by a 1. Since each number is always followed by the same
number, once we return to a number we have seen before, the pattern will begin

84



last edited April 30, 2016

to repeat again. The longest possible pattern then includes all integers between
1 and m� 1, but not 0, as explained. Therefore, if we are dividing powers of a
by m, then the maximum length of a repeating pattern of remainders is m� 1.

To see that this is indeed possible, consider the remainders of 51, 52, 53, . . .
when divided by m = 277. We obtain: 5, 25, 125, 71, 78, 113, 11, 55, . . . ; the
pattern will not repeat before we reach 5277, which is congruent to 5 and which
thus begins the pattern again. Now that we are aware of patterns with very long
periods, the approach of finding short patterns will not always help us simplify
large exponents. Fermat’s Little Theorem gives us an alternate shortcut for
computing modular remainders of large exponents.

Fermat’s Little Theorem

As we have seen, every sequence of powers a1, a2, a3, . . . (mod m) will eventually
form a repeating pattern, which can be as long as m� 1. If the length of such
a pattern is m � 1, then multiplying any number by am�1 is equivalent to
multiplying it by 1. In the language of modular arithmetic, this can be stated
am�1 ⌘ 1 (mod m).

Fermat’s Little Theorem, which we will not prove here, can be thought of as
a generalization of this result that does not involve consideration of repeating
patterns. More specifically:

Theorem 20 (Fermat’s Little Theorem). If a is an integer and p is a prime

number that does not divide a, then ap�1 ⌘ 1 (mod p).

You may have noticed the requirement that p does not divide a. Why is
this? To explain this, it pays to consider an example where p does divide a.
Consider what happens, for example, if a = 20 and p = 5. Of course p = 5 is a
prime number, but it is also clear that ap�1 ⌘ 0 (mod p), since 5 evenly divides
20, and so there is never a remainder after dividing 20, or any power of it, by 5.
So Fermat’s Little Theorem can only consider cases where p does not divide a.

Example 1. Example 1. What is the remainder of 5072 when divided by 73?
Since 73 is a prime number, and since 50 is not a multiple of 73, then we have
5072 ⌘ 1 (mod 73). So the remainder of 5072 when divided by 73 is 1.

Example 2. What is the remainder of 10010 when it is divided by 11? Since 11
is a prime number, and since 100 is not a multiple of 11, then we have 10010 ⌘ 1
(mod 11). So the remainder of 10010 when divided by 11 is 1. Of course we
can combine this congruence relation with itself (using Theorem 16) to obtain
10020 = 10010⇥10010 ⌘ 1⇥1 = 1 (mod 11). The same process can be repeated
to show that 10030, 10040, etc, are also congruent to 1 mod 11.

Example 3. What is the remainder of 349 when divided by 7? Fermat’s Little
Theorem tells us that 36 ⌘ 1 mod 7, so we write 350 in terms of 36. We can
write this as 349 = 3 · (36)8, which we can then reduce: 3 · (36)8 ⌘ 3 · 18 ⌘ 3
(mod 7).

85



last edited April 30, 2016

Example 4. What is the remainder of 2432 when divided by 11? Of course
11 is a prime number, but the exponent here is not p � 1, so how can we use
Fermat’s Little Theorem to help us? We can rewrite 2432 as 243022 = (210)4322.
Note that Fermat’s Little Theorem tells us that 210 ⌘ 1 mod 10, which means
that we can replace 210 in this equation with 1. So we have 2432 = 243022 =
(210)4322 ⌘ 14322 ⌘ 1 · 22 ⌘ 4 (mod 1)1. Hence, the remainder of dividing 2432

by 11 is 4.

Example 5. What is 2925 (mod 11)? Fermat’s Little Theorem tells us that
2910 ⌘ 1 (mod 11), so we want to rewrite 2925 as 2910 ·2910 ·295. We then have
2925 ⌘ 2910 · 2910 · 295 ⌘ 1 · 1 · 295 ⌘ 295 (mod 11). Since 29 ⌘ 7 (mod 11), we
can further simplify this to 75 = 72 · 72 · 7 ⌘ 49 · 49 · 7 ⌘ 5 · 5 · 7 ⌘ 10 (mod 11).

Example 6. What is 110+220+330+440+550+660 (mod 11)? Fermat’s Little
Theorem has a10 ⌘ 1 (mod 11) for each term. Even when we take multiples of
the exponent 10, we still have the same result. Therefore, each term contributes
1, and so the answer is the number of terms, 6.

Notice that each problem is di↵erent and requires thinking. Oftentimes,
rewriting a large exponent as the product of smaller exponents can enable the
use of patterns of Fermat’s Little Theorem to further simplify a problem.

86



last edited April 30, 2016

6.4 Di�e-Hellman Key Exchange

We can now use modular arithmetic to devise a secure communication protocol.
We begin by discussing a method by which two people, far away from one
another, can share a password that no one else can know. What is amazing is
that both of them can send information publicly, yet end up with a mutually-
shared password that only these two people know. How can they do that?

To motivate the general approach, consider the following dilemma. Suppose
you and a friend would each like to paint your rooms with the same color. It’s
not important what color that is, but you want to make sure that no one else
in town uses that color. How can you make this happen? If the two of you go
to Lowe’s or Home Depot together, you can choose a color, split the can, and
go home. But suppose that you to live some distance away and won’t have a
chance to see each other. If one of you buys the paint and sends half of it to the
other person, someone else, perhaps the delivery person, might intercept that
color! Even if the person only sends the information about the paint, someone
else might discover your scheme. Is there any way to solve this problem?

Mixing Paints

It turns out that there is such a way, due to a very important “problem” that
arises in mixing paints that some readers have likely encountered. Imagine going
to the store and choosing a color you like, and also a bucket of white paint, which
you use to make the color lighter. You go home and mix some blue paint and
some white until you get the color that you think will look perfect. You begin
painting the room but soon, after painting half of the walls, you realize that
you didn’t mix enough paint, and you’ll need to make more. Now you have a
mega-problem. You don’t remember exactly how much white you added to the
blue, and have no idea how to recreate the exact shade you made initially. Of
course you can guess the proportions, but now there’s a good chance that half
of your walls will be one shade of blue, and the other half of the walls will be
another shade. You’ve painted yourself into a figurative corner.

This problem highlights the following beautiful property of paints – it’s very
easy to mix them, but almost impossible to look at a mixed paint and determine
how it was made. While this can be very frustrating for someone painting, this
issue in fact allows you and your friend to solve your high-security room-painting
needs. You can do the following. Each of you takes a gallon of white paint. Next,
you take a colored paint of your choosing in an amount of your choosing and add
that to the gallon of white paint you bought; you don’t tell anyone how much
you’ve added. Your friend does the same with whatever color they’ve chosen.
Now each of you sends that paint to the other person. The important point to
notice is that anyone that might see the paints in transit has no way of knowing
what other paint you’ve mixed in and in what quantity. Perhaps you’ve added
a quarter gallon of quarter gallon of Fountain blue, or perhaps it was a third of
a gallon of Capri.

Now you have the paint your friend has mixed, and they have the paint that

87



last edited April 30, 2016

you’ve mixed. These paints are di↵erent, but you can now make them the same
quite easily. Each of you adds to the paint in your hands the exact amount
of whatever paint you’ve chosen and added to the other paint. The two paints
are now identical and only the two of you have that color, since anyone in the
middle who has seen the paint in transit has no way of determining what color
and what amount each of you have added.

This beautiful “thought experiment” shows that it is possible for two people
to work together to create information that is known only to them and secret
from everyone else, even though they have shared some information publicly.
This idea motivates the development of the Di�e-Hellman key-exchange proto-
col that is used regularly by computers when information must be sent securely.
Of course computers do not send paints to one another, but through modular
arithmetic they are able to achieve a similar result.

Di�e-Hellman Key Exchange

Alice and Bob would like to communicate securely. The Di�e-Hellman key
exchange protocol allows them to work together to create a password that only
the two of them will know, even while some of the information they exchange
is completely public. To do this, they use numbers instead of paints. More
specifically, they agree (publicly) on a modulus m and an integer g, which is
smaller than m and which serves as their “white paint”. Next, each of Alice and
Bob chooses another secret number which they will share with nobody; we will
use a to refer to Alice’s secret number and b to refer to Bob’s secret number.

Alice then calculates ga (mod m) and Bob calculates gb (mod m). Like with
the paints, it is easy to create these numbers but almost impossible to figure
out how they were made. That is, if you just know g, m, and ga (mod m),
there is no known way of e�ciently determining a. If m is small we can use
trial-and-error to quickly determine a, but in general the value of m might have
hundreds of digits (we’re talking about numbers bigger than a trillion times
a trillion times a trillion many times over). For this reason, Alice can send
the number ga (mod m) to Bob and not worry that anyone will figure out her
secretly chosen number a, even if they know g, m, and ga (mod m). Likewise,
Bob can send over gb (mod m) and not worry that someone will figure out his
secret number b. In this sense, they are sending over their specially-mixed paints
and no one can figure out how they mixed them, even if they know that the
base was white.

At this point Alice still remembers her secret number a and now has a
number gb (mod m) which she received from Bob. Using this, and modular
exponentiation, she can quickly compute (gb)a (mod m) by taking gb (mod m)
to the ath power. Likewise, Bob still has his secret number b and also knows
ga (mod m), which Alice told him, allowing him to compute (ga)b (mod m).
We might remember from high-school algebra that (xa)b = xab = xba = (xb)a;
the same rules hold in modular arithmetic, and so (xa)b ⌘ xab ⌘ xba ⌘ (xb)a

(mod m). Therefore, Alice and Bob now have the same number gab (mod m),
and they are the only two people that know the number. Even though bad guys

88



last edited April 30, 2016

might know g and m, and even ga and gb (mod m), they have no way to figure
out gab (mod m).

If Alice and Bob use g = 3 and modulus m = 19, for example, then if we
can just compute g1, g2, . . . , g18 to determine all possible values of ga (mod m),
and use that list to determine a once we know ga (mod m). As noted above,
however, m is usually chosen to be a number with hundreds and hundreds of
digits, and calculating a list of possible ga (mod m) values for every a < m
would take billions and billions of years, even if we had the most powerful
computers in the world focused on that problem alone. It is thus the practical

impossibility of determining a that makes this protocol secure. We don’t know
whether one day someone will figure a way to determine a; if that happens,
security as we know it will need new tools.

NOTE: In setting up this protocol, it is important to make “good” choices
of g and m. To highlight why some thought is necessary, consider choosing
g = 10 and m = 101. We might notice quickly notice that g1, g2, g3, g4, g5 . . . ⌘
10, 100, 91, 1, 10, . . . (mod 101). In other words, the repeating pattern has pe-
riod 4, and so there are only 4 possible values of gn (mod 101). That means
that Alice and Bob will only be able to send over one of these 4 numbers, making
it extremely easy to crack this code.

Example 1. Alice and Bob agree to use g = 7 and m = 997. Alice chooses
a = 5 and Bob chooses b = 10; they keep these numbers secret, telling no
one else about them. Alice then calculates ga = 75 ⌘ 855 (mod m) and Bob
calculates gb = 710 ⌘ 224 (mod m). Each sends their computed number to the
other, so Alice receives 224 and Bob receives 855. They each then compute gab

(mod 997) by taking their received number and exponentiating it to their secret
number. Alice determines that 2245 ⌘ 455 (mod 997) and Bob determines that
85510 ⌘ 455 (mod 997). Both Alice and Bob now can use the number 455 as a
shared secret password.

Example 2. Alice and Bob agree to use a base g = 37 and modulus m
= 2,305,843,009,213,693,951. Alice chooses a = 537 and Bob chooses b =
3024934, which they use to calculate ga (mod m) ⌘ 957,141,291,894,918,330
and gb (mod m) = 2,210,741,389,954,762,204. Each sends their computed num-
ber to the other, so Alice receives gb (mod m) and Bob receives ga (mod m).
They each then compute gab (mod m) by taking their received number and
exponentiating it to their secret number. Alice determines (gb)a (mod m) =
2,305,843,009,213,693,951 and Bob determines that (ga)b (mod m) is that same
number. Alice and Bob now can use this number gab (mod m) as a shared se-
cret password to communicate securely. If a bad guy wanted to guess the secret
numbers of Alice and Bob, they might need to perform millions of billions of
computations to determine that a = 537 or that b = 3024934.

Of course calculating these numbers is not easy to do by hand, but can be
done relatively easily by a well-programmed computer. This protocol allows
computers to communicate with one another through insecure, public channels,
yet protect secrecy of the transmitted information. It is used regularly by billions
of electronic devices around the world every single day.

89



last edited April 30, 2016

6.5 Random Numbers

The final topic we will cover in connection with modular arithmetic is that of
random numbers, and how computers generate them. It turns out that there is
an amazing, though quite mysterious, connection between modular arithmetic
with large exponents and the generation of “random numbers”. We put the
words random numbers in quotations because in a sense that will become clear
in a moment, the random numbers we generate will not really be random at all,
even if a person looking at them doesn’t really know that.

Random numbers appear regularly in our everyday lives in di↵erent forms.
If you’ve ever watched an NFL ref flip a coin to determine how a game would
start, or if you’ve ever rolled a die while playing a board game with friends, or
if you’ve ever chosen a random card from a deck of cards, then you’ve witnessed
the role that randomness can play in determining some course of events.

Computers too use randomness on a regular basis. If you’ve ever asked
iTunes to shu✏e your playlist, you have asked your computer to do something
that is random. If you’ve ever played a video game, you’ve witnessed a computer
make choices about many random details. If you’ve ever used a computer to
create realistic-looking pictures, for a movie or a video game, the computer has
likely needed to generate random numbers, to help mimic the randomness that
appears so ubiquitous in nature. If you are trying to use a computer to simulate
some physical, biological, chemical, economic process, chances are that you will
need some randomness to make sure that your simulation is realistic. And
finally, if you have ever communicated secure information through the internet,
chances are that your computer has needed to generate some kind of random
number.

Discussing the generation of random numbers by computers requires us to
first consider the more general question of what we mean by random numbers.
We begin with a very brief discussion of some basic ideas of probability.

What are random numbers?

We begin with several simple exercises, to highlight three simple lessons of prob-
ability. As an exercise, think of a random number between 1 and 10. Imagine
that you chose seven. Does that mean that seven is a random number? Is it
more random than two or three or nine? Of course these are silly questions, and
it doesn’t make much sense to discuss whether individual numbers are random
or not. The more interesting, and fruitful, question is whether some sequence
of numbers is random. Lesson 1: There is no such thing as a random number.
Instead we consider sets or sequences of numbers that are random.

Next, consider the following two sequences of numbers. Perhaps both sets
of numbers correspond to a sequence of coin-flips, with heads indicated by 1’s
and tails indicated by 0’s:

a) 0 1 0 1 0 1 0 1 0 1 0 1 0 1

b) 0 1 1 0 0 1 1 1 0 0 1 0 1 1

90



last edited April 30, 2016

Sequence a) does not appear “random” – it’s merely a repeating pattern of
0 and 1. What about the sequence b)? This one appears to be random, or at
least much more so than the first. Now consider the following two sequences of
integers.

c) 2 6 5 3 5 8 9 7 9 3 2 3

d) 7 5 2 3 10 4 6 9 8 1

Is the first set of numbers random? What about the second set? Looking
back at a) and b), these two appear significantly “more” random than those.
Indeed, even if we thought that b) appeared random, we would admit that it
appears random only when considering sequences of 0’s and 1’s, but not when
considering more arbitrary sequences. If we we allow integers all the way up
to 10, then neither of a) nor b) seem at all random. Lesson 2: Randomness
is “relative”. Whether or not a sequence of numbers is “random” depends on
what numbers we are choosing from.

Finally, consider the following set of numbers, chosen from 5 to 30.

e) 20 19 14 12 19 18 17 19 20 14 18 12 20

Are these numbers random? Even though you might believe that these numbers
are all from between 5 and 30, they certainly don’t seem very random, as all
of them are greater than 10 and no larger than 20. Could these numbers have
indeed been chosen from between 5 and 30? Indeed these numbers were chosen
from between 5 and 30, yet the manner in which they were chosen was not
uniform. That is, there was not an equal chance that 5 and 15 and 25 were
chosen. In fact, these numbers were obtained as follows. To obtain each number,
I rolled a die five times and added the sum of their values. Since there were five
dice, of course the minimum value I could get was 5 (if I rolled only 1’s) and the
maximum was 30 (if I rolled only 6’s). But it’s much easier to obtain numbers
in the middle than numbers at the extremes. Lesson 3: Randomness does not
need to be uniform; the probability of choosing one object can be di↵erent from
the probability of choosing another one.

Along these lines, consider the following “random” SAT scores:

f) 1590 1470 2100 830 1930 2040 840 2050 1950 840 640.

Of course these numbers must be between 600 and 2400, and must be divisible
by 10. But despite being among certain values, they don’t of course, represent
a “random” sample, certainly not among Penn students, but not even among
the general population. Therefore, when choosing numbers randomly, we must
always specify the probability of each outcome. Of course, many more students
score a 1700 than score an 800 or 2300.

Lessons 2 and 3 highlight the need for describing a probability distribution
before considering whether a particular set of numbers is random or not – ran-
domness cannot be sensibly discussed without this kind of frame of reference.
A probability distribution describes that frame of reference by giving us a list

91



last edited April 30, 2016

of possible values that can be chosen, and the probabilities of choosing each of
those values. In all of our examples, we have considered distributions with a
finite number of possible choices, though in theory we can consider more com-
plicated ones.

In discussing how computers generate random numbers, we will only consider
a uniform distribution on a finite set of numbers. In particular, suppose we
want a computer to choose a number between 1 and 100 with a one percent
chance of choosing any particular number. More generally, we might want to
ask a computer to choose a number between 1 and N , with an equal chance of
choosing any one of the N choices. How can a computer do this?

How Computers Generate Random Numbers

Computers are very, very, very good at completing certain tasks. For example,
computers are very good at adding numbers. Or multiplying them. Or dividing
them and taking square roots and exponents. And they can do this all really,
really, really well, and much faster and more accurately than any of us. But
they can only do what you tell them to do, with specific instructions. This raises
the question of how can a computer generate a random number? How can it
generate something random by following a fixed set of rules? The honest truth
is that it can’t. A deterministic machine that just follows orders, and follows
fixed instructions, cannot generate true random numbers. However, we will see
that, using modular arithmetic, a computer can generate numbers that appear
random for most intents and purposes.

Irrational numbers. One source of random numbers can be found in the
decimal expansion of irrational numbers. Consider, for example, the decimal
expansions of ⇡, e, and

p
2:

g) (3.) 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

h) (2.) 7 1 8 2 8 1 8 2 8 4 5 9 0 4 5 2 3 5 3 6

i) (1.) 4 1 4 2 1 3 5 6 2 3 7 3 0 9 5 0 4 8 8 0

It is commonly believed that these numbers are very random, in a way that can
be made precise. In practice, people have looked at the first billion digits of ⇡
and the digits seem to appear randomly distributed. For example, roughly one
tenth of all digits are 0’s, one tenth are 1’s, and so forth. No one, though, knows
whether this is true indefinitely. As far as we know, after the first trillion digits,
there tend to be considerably fewer 3’s than any other digit; it is also possible
that there are no 7’s appearing after the first fifty trillion digits. No one knows
how to prove anything about this.

In practice, irrational numbers are not commonly used to generate random-
looking numbers for several reasons. First, generating digits in this manner is
expense, both in terms of computational time and memory. Furthermore the
resulting numbers are very predictable. If I can figure out that you are using
⇡ or e or

p
2 to generate your random numbers, then in theory I can exactly

92



last edited April 30, 2016

predict every number that you will ever create. We will see later that this
doesn’t have to be a fatal flaw, but in practice, it often is.

Linear congruent generators

The most widely-used random number generators are called linear congruent
generators, and in this section we will learn about what they are and how they
are used. Remember that computers can follow orders, so we are trying to find
directions that create numbers that appear random.

The simplest type of random congruent generator is a sequence of numbers
of the form:

s, sa1, sa2, sa3, sa4, . . . (mod m), (75)

where a is called the multiplier, m is the modulus, and the first element s is
called the “seed”. Each term in the sequence can be obtained by multiplying
the term before it by a, and then taking it mod m (i.e., the remainder after
dividing it by m). We can rewrite the above in a slightly more condensed form.
In particular, if we use x

i

ot indicate the ith number in the sequence, we can
write:

x
i

= a · x
i�1 (mod m), (76)

where we let x0 = s. This definition defines each term as the product of a and
the preceding term in the sequence.

Let us consider a simple example. We choose a seed s = 1, a multiplier
a = 7, and a modulus m = 11. These choices of s, a, and m give us a sequence:

1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, . . . (77)

These numbers look fairly random, but the problem is that they repeat too
quickly. For reasons we have already discussed, the length of this sequence can
be no longer than m� 1. Therefore, in practice, random number generators try
to use a large modulus m.

Next we consider a much larger modulus m = 231 and multiplier a = 65539;
this was the basis for an historically-important random number generator de-
veloped and used by IBM in the 1960’s. If we choose a seed s = 123456789,
then our first several numbers are:

123456789, 1663592255, 280507837, 1743102263, 1491592101, . . . (78)

At first glance these numbers might appear fairly “random”, and indeed they
are evenly distributed between 1 and 231. However, you might notice that every
term is odd, which occurs when the seed s is chosen odd; if s is chosen even, then
every subsequent term will be even. Although we can get around this problem
by always dropping the last digit, this problem highlights some of the challenges
involved in designing random number generators.

In practice, however, linear congruent generators are the most widely-used
pseudo-random number generators in common use, and much work has been
put into determining good choices of multiplier a, modulus m, and seed s.

93



last edited April 30, 2016

A slight generalization of the example described here involves not only mul-
tiplying preceding terms by a constant a, but also adding a number to it. More
concretely, we choose a constant integer c which we call the increment and add
that after multiplying the previous term by a. In equation form,

x
i

= a · x
i�1 + c (mod m). (79)

To see how this works, let’s consider the simple example we considered before,
where we chose a multiplier a = 7, a modulus m = 11, and a seed s = 1. Let us
now also choose an increment c = 5. Instead of sequence in (77), we now get:

1, 10, 7, 8, 4, 9, 0, 3, 2, 6, 1, 10, 7, . . . (80)

The pattern is again periodic, but the order of the numbers have changed. In
some situations, including the extra incremental term c can improve certain
properties of the random numbers generated, but sometimes it can make things
much worse. Consider, for example, what happens in the previous example if
we instead use an increment c = 5. Notice that (7 · 1 + 5) = 12 ⌘ 1 (mod 11).
In words, if we begin with 1, multiply it by 7 and add 5, and then consider the
remainder after dividing by 11, then the remainder is 1. Therefore the “random”
sequence generated will end up being an endless sequence of 1’s – not a very
random sequence at all!

Randomness testing

We have already seen some potential pitfalls in the development of random
number generators. Sometimes the period of the repeating pattern is very short.
Other times the pattern might be quite long but the generated numbers are all
odd, or all even. Even if we are content with using deterministic algorithms to
generate number sequences that only look random, we still want to make sure
that they indeed appear random. Over the last fifty years, many tests have been
developed to determine whether a particular set of pseudo-randomly-generated
numbers indeed appear random. One of the best-known and most powerful such
tests is called the spectral test.

To help understand the spectral test, consider the following sequence of
numbers generated by linear congruence generators with seed s = 7, multiplier
a = 5, and modulus m = 97:

7, 35, 78, 2, 10, 50, 56, 86, 42, 16, 80, 12, 60, 9, 45, 31, . . . (81)

Next consider the sequence of numbers when we keep the modulus and seed,
but change the multiplier a to 10:

7, 70, 21, 16, 63, 48, 92, 47, 82, 44, 52, 35, 59, 8, 80, . . . (82)

The two sequences appear at first to be equally “random”. However, consider
what happens if we plot all pairs of consecutive terms in each sequence. For the
first sequence, for example, we would plot points (7, 35), (35, 78), (78, 2), etc.

94



last edited April 30, 2016

For the second sequence, we plot (7, 70), (70, 21), (21, 16), etc. Something mys-
terious occurs the quickly highlights the di↵erent strengths of the two sequences.
When we used the multiplier a = 5, all of the 96 points are “bunched up” on

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	
0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Figure 37: Linear congruence generators using modulus m = 97 and initial
seed s = 7 The points on the left are taken from a sequence generated using a
multiplier a = 5; those on the right are taken from a sequence generated using
a multiplier a = 10.

five lines, where when we use the multiplier a = 10, the 96 generated points are
much more spread out. A branch of mathematics called Fourier analysis can
be used to make these ideas precise, and in practice this kind of test is used
to determine whether particular choices of multiplier and modulus are random
“enough” for particular applications.

95


