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5.6 Euler Paths and Cycles

One of the oldest and most beautiful questions in graph theory originates from a
simple challenge that can be played by children. The town of Konigsberg (now
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Figure 33: An illustration from Euler’s 1741 paper on the subject.

Kaliningrad, Russia) is situated near the Pregel River. Residents wondered
whether they could they begin a walk in one part of the city and cross each
bridge exactly once. Many tried and many failed to find such a path, though
understanding why such a path cannot exist eluded them.

Graph theory, which studies points and connections between them, is the
perfect setting in which to study this question. Land masses can be represented
as vertices of a graph, and bridges can be represented as edges between them.
Generalizing the question of the Konigsberg residents, we might ask whether
for a given graph we can “travel” along each of its edges exactly once. Euler’s
work elegantly explained why in some graphs such trips are possible and why
in some they are not.

Definition 23. A path in a graph is a sequence of adjacent edges, such that
consecutive edges meet at shared vertices. A path that begins and ends on the
same vertex is called a cycle.

Note that every cycle is also a path, but that most paths are not cycles.
Figure 34 illustrates K5, the complete graph on 5 vertices, with four different
paths highlighted; Figure 35 also illustrates K5, though now all highlighted
paths are also cycles.

In some graphs, it is possible to construct a path or cycle that includes every
edges in the graph. This special kind of path or cycle motivate the following
definition:

Definition 24. An Euler path in a graph G is a path that includes every edge
in G; an Euler cycle is a cycle that includes every edge.
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Figure 34: K5 with paths of different lengths.
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Figure 35: K5 with cycles of different lengths.

Spend a moment to consider whether the graph K5 contains an Euler path
or cycle. That is, is it possible to travel along the edges and trace each edge
exactly one time. It turns out that it is possible. One way to do this is to trace
the (five) edges along the boundary, and then trace the star on the inside. In
such a manner one travels along each of the ten edges exactly one time. One
also ends at the same point at which one began, and so this Euler path is also
an Euler cycle.

This example might lead the reader to mistakenly believe that every graph
in fact has an Euler path or Euler cycle. It turns out, however, that this is far
from true. In particular, Euler, the great 18th century Swiss mathematician
and scientist, proved the following theorem.

Theorem 13. A connected graph has an Euler cycle if and only if all vertices
have even degree.

This theorem, with its “if and only if” clause, makes two statements. One
statement is that if every vertex of a connected graph has an even degree then
it contains an Euler cycle. It also makes the statement that only such graphs
can have an Euler cycle. In other words, if some vertices have odd degree, the
the graph cannot have an Euler cycle. Notice that this statement is about Euler
cycles and not Euler paths; we will later explain when a graph can have an Euler
path that is not an Euler cycle.

Proof. How can show that every graph with an Euler cycle has no vertices with
odd degree? One way to do this is to imagine starting from a graph with no
edges, and “traveling” along the Euler cycle, laying down edges one at a time,

67



last edited March 16, 2016

until we have constructed our original graph. We consider what happens to the
degree of each vertex as we travel around the graph adding edges. Notice that
before doing any traveling, and so before we draw in any of the edges, the degree
of each vertex is 0. Let us now consider the vertex from which we start and
call it vg. After leaving vy and laying down the first edge, we have increased
the degree of vy by 1, i.e., deg(vp) = 1. So long as we don’t return to vy, its
degree will stay 1. Now, notice what happens as we travel along our graph
adding edges. Every time we pass through a vertex, we increase its degree by
2. The reason for this is that every time we pass through a vertex, we add one
degree for the edge “entering” it and one degree for the edge “exiting” it. The
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Figure 36: “Traveling” along an Euler cycle in K5; numbers indicate vertex
degrees at each point in “time”.

definition of an Euler cycle requires that we end where we began, and so the
final edge takes us to vg, finally increasing its degree by exactly 1 and making it
even again. At this point, the degrees of all vertices, including the single vertex
from which we began and at which we ended, are all even. Figure 36 illustrates
traveling along the edges of K5 to construct an Euler cycle. O

The above proof only shows that if a graph has an Euler cycle, then all of its
vertices must have even degree. It does not, however, show that if all vertices
of a (connected) graph have even degrees then it must have an Euler cycle. The
proof for this second part of Euler’s theorem is more complicated, and can be
found in most introductory textbooks on graph theory.

Our proof above might motivate us to think about what happens if the Euler
path we are considering is not a cycle. In other words, what happens if we travel
along every edge in a graph but do not return to our starting point? Notice
that the degree of the starting point vy will then remain odd, as will the last
vertex which we visited, since we “entered” it but never “exited” it. Can any
of the other vertices in the graph have odd degree? No, because all degrees
began at 0, and only increased by 2 when they were visited, with the exception
of the vertex from which we began the vertex on which we stopped. Therefore,
all vertices have even degree with the exception of two, on which an Euler path
begins and ends. This proves a second theorem, one about Euler paths:

Theorem 14. A graph with more than two odd-degree vertices has no Euler
path.
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Hamiltonian Paths and Cycles

Until now we have considered paths and cycles that can visit vertices multiple
times. What happens if we require that a path visit every vertex exactly one
time? Such paths and cycles are called Hamiltonian paths and Hamiltonian
cycles, are the subject of much research. Suppose you would like to fly to every
major airport in the continental US without visiting any of them more than
once. Is this possible? Despite the similarity of this question to questions we
considered in discussing Fuler paths and cycles, considerably less is known about
them. In particular, there seems to be no good way to look at a particular graph
and know whether a Hamiltonian path or cycle exists, without trail and error.

Although less is known about Hamiltonian paths than about Euler paths,
many things are known. In particular, it is known that all five of the Platonic
solids have Hamiltonian cycles. Furthermore, every complete graph K, also has
a Hamiltonian cycle (can you see why?). In 1952, Gabriel Dirac proved that
every (simple) graph on n vertices has a Hamiltonian cycle if the degree of every
vertex is n/2 or greater. Although this theorem guarantees a Hamiltonian cycle
under certain conditions, this does not mean that if a graph has a Hamiltonian
cycle, then it must satisfy this condition.
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