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 Chapter 1: Probability: Classical and Bayesian

Probability in mathematical statistics is classically defined in terms of the outcomes of

conceptual  experiments, such as tossing ideal coins and throwing ideal dice. In such experiments 

the probability of an event, such as tossing heads with a coin, is defined as its relative frequency

in long-run trials. Since the long-run relative frequency of heads in tosses of a fair coin is one-

half,  we say that the probability of heads on a single toss is one-half. Or, to take a more

complicated example,  if we tossed a coin 50 times and repeated the series many times, we would

tend to see 30 or more heads in 50 tosses only about 10% of the time; so we say that the

probability of such a result is one-tenth. We refer to this relative frequency interpretation as

classical probability.  Calculations of classical probability generally are made assuming the

underlying conditions by which the experiment is conducted, in the above examples with a fair

coin and fair tosses. 

 This is not to say that the ratio of heads in a reasonably large number of tosses invariably

equals the probability of heads on a single toss. Contrary to what some people think, a run of

heads does not make tails more likely to balance out the results. Nature is not so obliging.  All

she gives us is a fuzzier determinism, which we call the law of large numbers.  It was originally

formulated by Jacob Bernoulli (1654-1705), the “bilious and melancholy” elder brother of the

famous Bernoulli clan of Swiss mathematicians, who was the first to publish mathematical

formulas for computing the probabilities of  outcomes in  trials like coin tosses.  The law of large

numbers is a formal statement, proved mathematically, of the vague notion that, as Bernoulli

biliously put it, “Even the most stupid of men, by some instinct of nature, by himself and without

any instruction (which is a remarkable thing), is convinced that the more observations have been

made, the less danger there is in wandering from one’s goal.”1

To understand the formal content of the commonplace intuition, think of the difference

between the ratio of successes in a series of trials and the probability of success on a single trial



as the error of estimating the probability from the series.  Bernoulli proved that the probability

that the error exceeds any given arbitrary amount can be made as small as one chooses by

increasing sufficiently the number of trials.  This result represented a fateful first step in the

process of measuring the uncertainty of what has been learned from nature by observation.  Its

message is obvious: the more data the better.

What has classical probability to do with the law?  The concept of probability as relative

frequency is the one used by most experts who testify to scientific matters in judicial

proceedings. When a scientific expert witness testifies that in a study of smokers and non-

smokers the rate of colon cancer among smokers is higher than the rate among non-smokers and

that the difference is statistically significant at the 5% level, he is making a statement about long-

range relative frequency.  What he means is that if smoking did not cause colon cancer and if

repeated samples of smokers and non-smokers were drawn from the population to test that

hypothesis, a difference in colon cancer rates at least as large  as that observed would appear less

than 5% of the time. The concept of statistical significance, which plays a fundamental role in

science, thus rests on probability as relative frequency in repeated sampling.     

Notice that the expert in the above example is addressing the probability of the data (rates

of colon cancer in smokers and non-smokers) given an hypothesis about the cause of cancer

(smoking does not cause colon cancer).  However, in most legal settings, the ultimate issue is the

inverse conditional of that, i.e., the probability of the cause (smoking does not cause colon

cancer) given the data.  Probabilities of causes given data are called inverse probabilities and in

general are not the same as probabilities of data given causes.  In an example attributed to

Keynes, if the Archbishop of Canterbury were playing poker, the probability that the Archbishop

would deal himself a straight flush given honest play on his part is not the same as the probability

of honest play on his part given that he has dealt himself a straight flush.  The first is 36 in

2,598,960; the second most people would put at close to 1 (he is, after all, an archbishop).

One might object that since plaintiff has the burden of proof in a law suit, the question in

the legal setting is not whether smoking does not cause cancer, but whether it does. This is true,

but does not affect the point being made here. The probability that, given the data, smoking

causes colon cancer is equal to one minus the probability that it doesn’t, and neither will in



general be equal to the probability of the data, assuming that smoking doesn’t cause colon

cancer. Or to vary our earlier example, the probability that the Archbishop was dishonest when

he dealt himself a straight flush   is not equal to the probability that if he were honest he would

deal himself a straight flush.  

The inverse mode of probabilistic reasoning is usually traced to Thomas Bayes, an

English Nonconformist minister from Tunbridge Wells, who was also an amateur mathematician.

When Bayes died in 1761 he left his papers to another minister, Richard Price.  Although Bayes

evidently did not know Price very well there was a good reason for the bequest: Price was a

prominent writer on mathematical subjects and Bayes had a mathematical insight to deliver to

posterity that he had withheld during his lifetime.

Among Bayes’s papers Price found a curious and difficult essay that he later entitled,

“Toward solving a problem in the doctrine of chances.”  The problem the essay addressed was

succinctly stated: “Given the number of times in which an unknown event has happened and

[has] failed: Required the chance that the probability of its happening in a single trial lies

somewhere between any two degrees of probability that can be named.”  Price added to the essay,

read it to the Royal Society of London in 1763, and published it in Philosophical Transactions in

1764.  Despite this exposure and the independent exploration of inverse probability by Laplace in

1773, for over a century Bayes’s essay remained obscure.  In fact it was not until the twentieth

century that the epochal nature of his work was widely recognized.  Today, Bayes is seen as the

father of a controversial branch of modern statistics eponymously known as Bayesian inference

and the  probabilities of causes he described are called Bayesian or inverse probabilities.  

Legal probabilities are mostly Bayesian (i.e., inverse).  The more-likely-than-not standard

of probability for civil cases and beyond-a-reasonable-doubt standard for criminal cases import

Bayesian probabilities because they express the probabilities of past events given the evidence,

rather than the probabilities of the evidence, given past events. Similarly, the definition of 

“relevant evidence” in Rule 401 of the Federal Rules of Evidence is “evidence having any

tendency to make the existence of any fact that is of consequence to the determination of the

action more probable or less probable than it would be without the evidence.” This definition

imports Bayesian probability because it assumes that relevant facts have probabilities attached to
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them. By contrast, the traditional scientific definition of relevant evidence, using classical

probability, would be any “evidence that is more likely to appear if any fact of consequence to

the determination of the action existed than if it didn’t.” 

The fact that classical and Bayesian probabilities are different has caused some confusion

in the law.  For example, in an old case, People v. Risley,2 a lawyer was accused of removing a

document from the court file and inserting a typed phrase that helped his case. Eleven defects in

the typewritten letters of the phrase were similar to those produced by defendant’s machine. The

prosecution called a professor of mathematics to testify to the chances of a random typewriter

producing the defects found in the added words. The expert assumed that each defect had a

certain probability of appearing and multiplied these probabilities together to come up with a

probability of one in four billion, which he described as “the probability of these defects being

reproduced by the work of a typewriting machine, other than the machine of the defendant....” 

The lawyer was convicted.  On appeal, the New York Court of Appeals reversed, expressing the

view that probabilistic evidence relates only to future events, not the past.  “The fact to be

established in this case was not the probability of a future event, but whether an occurrence

asserted by the People to have happened had actually taken place.”3

There are two problems with this objection. First, the expert did not compute the

probability that defendant’s machine did not type the insert, the occurrence asserted by the

People to have taken place.  Although his statement is somewhat ambiguous, he could reasonably

be understood to refer to the probability that there would have been matching defects if another

machine had been used.  Second, even if the expert had computed the probability that the insert

had been typed on defendant’s machine, the law, as we have seen, does treat past events as

having probabilities.4 If probabilities of past events are properly used to define the certainty

needed for the final verdict, there would seem to be no reason why they are not properly used for



subsidiary issues leading up to the final verdict. As we shall see, the objection is not to such

probabilities per se, but to the expert’s competence to calculate them.  

A similar confusion arose in a notorious case in Atlanta, Georgia. After a series of

murders of young black males, one Wayne Williams was arrested and charged with two of the

murders.  Critical evidence against him included certain unusual trilobal fibers found on the

bodies.  These fibers matched those in a carpet in Williams’ home.  A prosecution expert

testified that he estimated that only 82 out of 638,992 occupied homes in Atlanta, or about 1 in

8000, had carpeting with that fiber.  This type of statistic has been called “population frequency”

evidence. Based on this testimony, the prosecutor argued in summation that “there would be only

one chance in eight thousand that there would be another house in Atlanta that would have the

same kind of carpeting as the Williams home.”  On appeal, the Georgia Court of Appeals

rejected a challenge to this argument, holding that the prosecution was not precluded from

“suggesting inferences to be drawn from the probabilistic evidence.”

Taken literally, the prosecutor’s statement is nonsense because his own expert derived the

frequency of such carpets by estimating that 82 Atlanta homes had them. To give the prosecutor

the benefit of the doubt, he probably meant that there was 1 chance in 8,000 that the fibers came

from a home other than the defendant’s. The 1-in-8,000 figure, however, is not that, but the

probability of the particular kind of fiber, given that it came from an Atlanta home picked at

random.  

Mistakes of this sort are known as the fallacy of the inverted conditional. That they

should occur is not surprising. It is not obvious how classical probability based, for example, on

population frequency evidence, bears on the probability of defendant’s criminal or civil

responsibility, whereas inverse Bayesian probability purports to address the issue directly. In

classical terms we are given the probability of seeing the incriminating trace if defendant did not

leave it, but what we really want to know is the probability that he did leave it. Or to revert to our

expert on smoking and cancer, he testifies to the probability of observing the study data given

that smoking does not cause colon cancer, when we are after the probability that smoking does

cause colon cancer. In a litigation, the temptation to restate things in Bayesian terms is very

strong. The Minnesota Supreme Court was so impressed by the  risk of this kind of mistake by
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jurors that it ruled out population frequency evidence, even when correctly stated.5  The court

apprehended a “real danger that the jury will use the evidence as a measure of the defendant’s

guilt or innocence.”6  The court evidently feared that if, for example, the population frequency of

a certain incriminating trace is 1 in a 1,000 the jury might interpret this figure as meaning that the

probability of defendant’s innocence was 1 in a 1,000. And, as we have seen, it is not only jurors

who can make such mistakes. This particular misinterpretation, which arises from inverting the

conditional, is sometimes called the prosecutor’s fallacy.7  

Is the prosecutor’s fallacy in fact prejudicial to the accused?  Recent studies with

simulated cases before juries of law students show higher rates of conviction when prosecutors

are allowed to misinterpret population frequency statistics as probabilities of guilt than when the

correct statement is made.  The effect was most pronounced when population frequencies were as

high as one in a thousand, but some effect also appeared for frequencies as low as one in a

billion.  The correctness of the interpretation does seem to matter.

          The defendant also has his fallacy, albeit of a different sort.  This is the argument that the

evidence does no more than put defendant in a group consisting of all those who have the trace in

question, so that the probability that defendant left the trace is only one over the size of the

group.  If this were correct, then only a show of uniqueness (which is perhaps possible for DNA

evidence, but all but impossible as a general matter) would permit us to identify a defendant from

a trace.  This is not a fallacy of the inverted conditional, but is fallacious because, as we shall see,

it ignores the other evidence in the case.

        To examine the prosecutor’s and defendant’s fallacies a little more closely we ask a more
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general question: If it is wrong to interpret the probabilities of evidence given assumed causes as

probabilities of causes given assumed evidence, what is the relation between the two

probabilities? Specifically, what is the probative significance of scientific probabilities of the

kind generated by statistical evidence to the probabilities of causes implied by legal standards? 

The answer is given by what is now called Bayes’s theorem, which Bayes derived for a special

case using a conceptual model involving billiard balls. We do not give his answer here.  Instead,

to explain what his result implies for law, we use a doctored example from a law professor’s

chestnut: the case of the unidentified bus.8  It is at once more general and mathematically more

tractable than the problem that Bayes addressed.

The facts are simply stated.  On a rainy night, a driver is forced into collision with a

parked car by an unidentified bus.  Of the two companies that run buses on the street, Company

A owns 85% of the buses and Company B owns 15%.  Which company was responsible?  That

icon of the law, an eyewitness, testifies that it was a Company B bus.  A psychologist testifies

without dispute that eyewitnesses in such circumstances tend to be no more than 80% accurate.

Our problem is to find the probabilities associated with the cause of the accident (Company A or

B) given the case-specific evidence (the eyewitness report) and the background evidence (the

market shares of Companies A and B).  To be specific, let us ask for the probability that it was a

Company B bus, assuming that the guilty bus had to belong to either Company A or Company B.

The Bayesian result of relevance to this problem is most simply stated in terms of odds:9   

the posterior odds that it was a Company B bus are equal to the prior odds that it was a Company

B bus times the likelihood ratio that it was such a bus. Thus,

.posterior odds prior odds likelihood ratio= ×

In this formula the posterior odds are the odds that the cause of the accident was a



Company B bus, given (or posterior to) the background and case-specific evidence. These are

Bayesian odds. The prior odds are the odds that the cause of the accident was a Company B bus

prior to considering the case-specific evidence.  These are also Bayesian.  If one assumes in our

bus problem that, in the absence of other evidence bearing on routes and schedules, the prior

probabilities are proportional to the sizes of the respective bus fleets, the probability that it was a

Company A bus is 0.85 and a Company B bus is 0.15.  Hence the prior odds that the bus was

from Company A are 0.85/0.15 = 5.67 and from Company B are 0.15/0.85 = 0.1765.  Since

probabilities greater than 50% and odds greater than 1 meet the more-likely-than-not standard for

civil cases, plaintiff should have enough for a verdict against Company A, if we allow the

sufficiency of statistical evidence. That is a big “if.” We return to this point later.

To solve the problem that he set for himself, Bayes made the restrictive assumption that

the prior probabilities for the causes were equal.  Prior probability distributions that assign equal

or nearly equal probabilities to the possible causes are now known as diffuse or flat priors

because they do not favor one possibility over another.  The prior in our example is informative

and not diffuse or flat because it assigns much greater probability to one possible cause than to

the other. 

The third  element in Bayes’s theorem is the likelihood ratio for the event given the

evidence.  The likelihood ratio for an event is defined as the probability of the evidence if the

event occurred divided by the probability of the evidence if the event did not occur. These are

classical probabilities because they are probabilities of data given causes. In our bus example, the

likelihood ratio that it was a Company B bus given the eyewitness identification is the probability

of the witness reporting that it was a Company B bus if in fact it was, divided by the probability

of such a report if it were not. On the facts stated, the numerator is 0.80, since the witness is 80%

likely to report a Company B bus if it was such a bus.  The denominator is 0.20, since 20% of the

time the witness would mistakenly report a Company B bus when it was a Company A bus.  The

ratio of the two is 0.80/0.20 = 4.  We are four times as likely to receive a report that it was a

Company B bus if it was in fact such a bus than if it was not. 

The likelihood ratio is an important statistical measure of the weight of evidence. It is

intuitively reasonable.  The bloody knife found in the suspect’s home is potent evidence because



we think we were far more likely to find such evidence if the suspect committed the crime than if

he didn’t. In general, large values of the likelihood ratio imply that the evidence is strong; small

values the opposite; a ratio of 1 means that the evidence has no probative value.  

Putting together the prior odds and the likelihood ratio, the posterior odds that it was a

Company B bus given the evidence are 0.1765 x 4.00 = 0.706.  The probability that it was a

Company B bus is 0.706/(1 + 0.706) = 0.4138.  Thus, despite eyewitness identification, the

probability of a Company B bus is less than 50%. If there were a second eyewitness with the

same testimony and the same accuracy, the posterior odds with respect to the first witness could

be used as the prior odds with respect to the second witness and Bayes’s theorem applied again. 

In that case the new posterior odds would be 0.706 x 4.00 = 2.824 and the new posterior

probability would be 2.824/3.824 = 0.739.

Some people object to these results.  They argue that if the eyewitness is right 80% of the

time and she says it was a Company B bus, why isn’t the probability 80% that it was a Company

B bus?  Yet we find that, despite the eyewitness, the preponderance of probability is against the

witness’s testimony.  The matter is perhaps even more counter-intuitive when there are two

eyewitnesses.  Most people would think that two eyewitnesses establish a proposition beyond a

reasonable doubt, yet we conclude that the probability of their being correct is only about 74%,

even when there is no contrary testimony.  Surely Bayes’s theorem is off the mark here.

There are two things wrong with this argument.  The first is that it confuses two

conditional probabilities: the probability that the witness would so testify conditional on the fact

that it was a Company B bus (which is indeed 80%) and the probability that it was a Company B

bus conditional on the fact that the witness has so testified (which is not necessarily 80%;

remember the Archbishop playing poker). 

The second and related objection is that the 80% figure ignores the effect of the statistical

background, i.e., the fact that there are many more Company A buses than Company B buses. 

For every 100 buses that come along only 15 will be Company B buses but 17 (0.20 x 85) will be

Company A buses that are wrongly identified by the first witness.  Because of the fact that there

are many more Company A buses, the witness has a greater chance of wrongly identifying a

Company A bus as a Company B bus than of correctly identifying a Company B bus.  The



probabilities generated by Bayes’s theorem reflect that fact.  In this context its application

corrects for the tendency to undervalue the evidentiary force of the statistical background in

appraising the case-specific evidence.

The correction for statistical background supplied by Bayes’s theorem becomes

increasingly important when the events recorded in the background are rare.  In that case even

highly accurate particular evidence may become surprisingly inaccurate.  Screening devices are

of this character.  For example, the Federal Aviation Administration is said to use a statistically

based hijacker profile program to help identify persons who might attempt to hijack a plane using

a nonmetallic weapon.  The accuracy of such screening tests is usually measured by their

sensitivity and specificity.  Sensitivity is the probability that the test will register a positive result

if the person has the condition for which the test is given.  Specificity is the probability the test

will be negative if the person doesn’t have the condition.  Assume that the test has a sensitivity of

90% (i.e., 90% of all hijackers are detected) and a specificity of 99.95% (i.e., 99.95% of all non-

hijackers are correctly identified).  This seems and is very accurate.  But if the rate of hijackers is

1 in 25,000 passengers, Bayes’s theorem tells us that this seemingly accurate instrument makes

many false accusations.

The odds that a passenger being identified as a hijacker by the test is actually a hijacker

are equal to the prior odds of a person being a hijacker times the likelihood ratio associated with

the test.  Our assumption is that the prior odds that a passenger is a hijacker are (1/25,000) /

(24,999/25,000) = 1/24,999.  The likelihood ratio for the test is the probability of a positive

identification if the person is a hijacker (0.90) divided by the probability of such an identification

if the person is not (1 - 0.9995 = 0.0005).  The ratio is thus 0.90/0.0005 = 1,800.  The test is

powerful evidence, but hijackers are so rare that it becomes quite inaccurate.  The posterior odds

of a correct identification are only (1/24,999) x 1,800 = 0.072.  The posterior probability of a

correct identification is only 0.072/1.072 = 0.067; there is only a 6.7% chance that a person

identified as a hijacker by this accurate test is really a hijacker.  This result has an obvious

bearing on whether the test affords either probable cause to justify an arrest or even reasonable
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suspicion to justify a brief investigative detention.10

The failure to distinguish posterior odds and likelihood ratios has led to some confusion

in the Supreme Court’s jurisprudence on the constitutionality of stopping passengers to search for

drugs based on a profile.11  In particular, debates have swirled around the question whether a

profile can be a basis for “reasonable suspicion” that the person is a drug courier, which would

justify a brief investigative detention, a lower standard than “probable cause” needed for an

arrest.  Since drug couriers are rare among passengers even profiles with impressive operating

characteristics are likely to generate small posterior odds that the person is a courier.  For

example, imagine a profile which is quite accurate: 70% of drug couriers would fit the profile,

but only 1 normal passenger in a 1,000 would do so. The likelihood ratio for the profile is

0.70/.001 = 700, which means that the odds that a person is a courier are increased 700-fold by

matching the profile.  But if the rate of couriers is 1 in 10,000 passengers, the odds on the person

matching the profile is a courier are only (1/9,999) x 700 = 0.07, or a probability of 6.5%.  This

result is not fanciful: A study by the U.S. Customs Service found that the hit rate for such stops

was about 4%.

These facts lead us to the legal issue that the Supreme Court has not faced in these cases:

whether a profile that significantly increases the probability that the person is a criminal is a

sufficient basis for reasonable suspicion, even if that increased probability remains low because

couriers are so rare.  By greatly increasing the probability that a person who fits the profile is a

courier, a valid profile clearly can provide a rational basis for investigation. If “reasonable

suspicion” requires no more than a “rational basis” for suspicion, then a profile could be

sufficient.  On the other hand, if “reasonable suspicion” requires a reasonable probability of

crime, a profile is unlikely to be sufficient.  Which standard applies is presently unclear.

We have been considering the effects of the likelihood ratios of screening tests on their

predictive values.  We now turn things around and consider the implications of predictive values
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for likelihood ratios.  In United States v. Scheffer,12 the Supreme Court considered a challenge to

the constitutionality of Military Rule of Evidence 707, which made polygraph evidence

inadmissible in military courts-martial, because it denied the accused the right to introduce an

exonerating test.  Justice Thomas, writing for the majority,  upheld the rule, arguing that the

reliability of the polygraph was uncertain. In support of that, Thomas pointed out  that views of

polygraph accuracy ranged from 87% to little better than the coin  toss  (50%).  However, in

taking the position that polygraphs were not sufficiently reliable to be admitted in evidence,  the

government had to deal with the interesting fact that the Defense Department itself used

polygraph tests to screen employees in a counterintelligence program.  If good enough for

counterintelligence, why not for court?

The negative predictive values of the test were very strong in the counterintelligence

context: if an employee passed the test the probabilities were very high that he was not a security

risk meriting further investigation. But this high value is probably not applicable to polygraphs

given in criminal cases because it depends on the operating characteristics of the test and on the

prior odds of guilt; and the prior odds on guilt would probably be much larger in a criminal case

than in a screening program.  Nevertheless, admissibility should not turn on the test’s predictive

values because the strength of other evidence of guilt is no justification for keeping out strong

exonerating  test results. Probative strength for these purposes has to measured by the likelihood

ratio associated with a negative test result, which measures how much the predictive values

change with the results.   Information about the likelihood ratio can be gleaned from the results

of screening, assuming that the likelihood ratio) remains the same across contexts. (This is a

conservative assumption because it is probable that test is more accurate in the criminal context

than in the more amorphous arena of security screening.) 

In 1997, about the time of Scheffer, the Defense Department used the polygraph to screen

7,440 employees;  the polygraph identified 176 employees as possible security risks, to be further

investigated, and passed 7418 employees.  Of the 176 employees at the time the data were

reported to Congress 6 had lost clearance and the cases of 16 were pending. Assume for the
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moment that all pending cases were resolved unfavorably to the individuals, so there would be 22

security risks among the 176 identified by the polygraph screen.  How many security risks were

not identified by the polygraph? If the polygraph has only a 50% chance of identifying a security

risk (Justice Thomas’s coin toss) there would be another 22 risks that were not so identified; the

negative predictive value of the test would be 7418/7440 = 0.997, and the negative predictive

odds would be 0.997/0.003 = 332.  Since there are assumed to be 44 security risks out of 7616

employees, the prior probability that an employee is not a security risk is 7572/7616 = 0.994, and

the prior negative odds are 0.994/0.006 = 166.  Using Bayes’s theorem, the likelihood ratio

associated with a negative polygraph test is therefore about 332/166 = 2.0.  If the polygraph were

87% accurate, a similar calculation shows that the likelihood ratio for an exonerating test would

rise to about 8.  Thus the odds on innocence are increased between two and eight times by an

exonerating polygraph.13  An incriminating polygraph has low predictive power in the

counterintelligence arena–between 3.4% and 12.5%–but an even stronger likelihood ratio than

the exonerating polygraph.  The odds on guilt are increased by between 25 and 43 time for a

defendant who fails a polygraph test. Either way, the polygraph  qualifies as highly relevant

evidence, and it illustrates that a test used for screening may supply important evidence for

criminal cases.

Classical statisticians have two basic objections to Bayesian analysis.  The first is

philosophical. They point out that for events above the atomic level, which is the arena for legal

disputes, the state of nature is not probabilistic; only the inferences to be drawn from our

evidence are uncertain.  From a classical statistician’s point of view, Bayesians misplace the

uncertainty by treating the state of nature itself, rather than our measurement of it, as having a

probability distribution.  This was the point of view of the Risley court.  However, the classicists

are not completely consistent in this and sometimes compute Bayesian probabilities when there

are data on which to base prior probabilities.

The second objection is more practical.  In most real-life situations, prior probabilities
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that are the starting point for Bayesian calculations cannot be based on objective quantitative data

of the type at least theoretically available in our example, but can only reflect the strength of

belief in the proprosition asserted. Such probabilities are called subjective or personal

probabilities.  They are defined not in terms of relative frequency, but as the odds we would

require to bet on the proposition.  While the late Professor Savage has shown that subjective or

personal probabilities satisfying a few seemingly fundamental axioms can be manipulated with

the same methods of calculation used for probabilities associated with idealized coins or dice,

and thus are validly used as starting points in Bayesian calculations, there is a sharp dispute in the

statistical community over the acceptability of numerical measures of persuasion in scientific

calculations.14   After all, subjective prior probabilities may vary from person to person without a

rational basis.  No other branch of science depends for its calculations on such overtly personal

and subjective determinants.

To these objections the Bayesians reply that since we have to make Bayesian judgments

in any event, at some point we must introduce the very subjectivity that we reject in the classical

theory.  This answer seems particularly apt in law.  We require proof that makes us believe in the

existence of past events to certain levels of probability; this attachment of probabilities to

competing states of nature is fundamentally Bayesian in its conception.  And since we have to

make these judgments in any event, the Bayesians argue that it is better to bring them within the

formal theory because we can correct for biases that are far more important than the variability of

subjective judgments with which we started.  

To make this point specific, let me report on my personal experiments with the theory.  I

give each class of my law students the following hypothetical and ask them to report their

personal probabilities.15  A woman is found in a ditch in an urban area. She has been stabbed

with a knife found at the scene.  The chief suspect is her boy friend.  They were together the day

before and were known to have quarreled.  He has been violent on other occasions.  Based on



16  For such a person the prior odds are 0.25/0.75 = 1/3.  The likelihood ratio is 1 (we are
certain that the palm print would be like the defendant’s if he left it) divided by 1/1000 (the rate
of such palm prints in the population if he didn’t leave it, or 1,000.  Applying Bayes’s theorem,
1/3 x 1,000 = 333.33 (the posterior odds).  The posterior probability of guilt is thus
333.33/334.33 = 0.997.   

these facts, I ask the students for their estimate of the probability that he killed her.  For the most

part the students give me estimates between 25% and 75%.  Now I tell them that there is a partial

palm print on the knife, so configured that it is clear that it was lwft there by someone who used

to stab rather than cut.  The palm print matches the boy friend’s palm, but it also appears in one

person in a thousand in the general population.  I ask again: what is the probability that he killed

her?  Usually (not always!) The estimate goes up, but generally not over 90%.

Bayes’s theorem teaches us that the adjustments made by the students are too small.  For

the person whose prior was 0.25, his or her posterior probability should be 0.997.16  The upper

range of the range,At On the other hand, if there is no evidence of responsibility apart from the

trace, the accused is no more likely to have left it than anyone else in the relevant population who

shared the trace.  If N is the size of the relevant population (excluding the accused) then there are

N/1000 people in the population who share the trace, plus the accused.  The probability the

accused left the print is     If we apply Bayes’s theorem,
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assuming there is no other evidence against the accused other than the trace, the prior probability

of guilt is 1/(N + 1), and the prior odds on guilt are simply 1/N. Since the likelihood ratio is still

1,000, the posterior odds are 1,000/N, and the posterior probability

is  which is as the accused argued.  So while the prosecutor’s
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fallacy assumes a 50% prior probability that the accused left the print, the defendant’s fallacy

assumes a prior probability no greater than  that of a randomly selected person.

Thus the admissibility and sufficiency of population frequency data may, as a theoretical

matter, turn on the strength of the other evidence in the case.  One must say as a theoretical



17 96 Me. 207, 52 A. 771 (1902).

18 Id. at 217-218, 52 A. at 774.

19 307 Mass. 246, 29 N.E.2d 825 (1940)

matter because as a practical matter it is hard to imagine a real criminal  case in which the other

evidence would not suffice to permit the jury also to hear the statistical evidence.  The

prosecutor’s fallacy is likely to be closer to the truth than the defendant’s fallacy. 

In civil cases, the story is more complicated.  

In some early cases in which there were no data, a few judges muddied the waters by

sounding the theme that quantitative probability is not evidence.  For example, in Day v. Boston

& Maine R.R.,17 a case involving the need to determine the cause of death in a railway accident,

but in which there was really no evidence of how the accident had occurred, Judge Emery

gratuitously commented that mathematical probability was akin to pure speculation: 

Quantitative probability – is only the greater chance.  It is not proof, nor even probative

evidence of the proposition to be proved.  That in one throw of the dice there is a

quantitative probability, or greater chance, that a less number of spots than sixes will fall

uppermost [the probability is 35/36] is no evidence whatever that in a given throw such

was the actual result . . . The slightest real evidence that sixes did in fact fall uppermost

would outweigh all the probability otherwise.18

This theme was picked up in Sargent v. Massachusetts Accident Company,19 in which the

court had to decide whether the deceased, canoeing in the wilderness, met his end by accident

(which would have been within the insurance policy) or by other causes such as starvation (which

would not). Of course, there were no data. Citing Day, Justice Lummus elaborated, in much-

quoted language,  the theme of mathematical probability as insufficient proof:

It has been held not enough that mathematically the chances somewhat favor a

proposition to be proved; for example, the fact that colored automobiles made in the



20 307 Mass. at 250-251, 29 N.E.2d at 827.

21 See, e.g., Guenther v. Armstrong Rubber Co., 406 F.2d 1315 (3rd Cir. 1969) (holding
that although 75% to 80% of tires marketed by Sears were made by defendant manufacturer,
plaintiff would have lost on a directed verdict even if he had been injured by a tire bought at
Sears). 

22  2005 U.S. App. LEXIS 3471 (5th Cir. 2005).

current year out-number black ones would not warrant a finding that an un-described

automobile of the current year is colored and not black, nor would the fact that only a

minority of men die of cancer warrant a finding that a particular man did not die of

cancer. The weight or preponderance of the evidence is its power to convince the tribunal

which has the determination of the fact of the actual truth of the proposition to be proved.

After the evidence has been weighed, that proposition is proved by a preponderance of

the evidence if it is made to appear more likely or probable in the sense that actual belief

in its truth, derived from the evidence, exists in the mind or minds of the tribunal

notwithstanding any doubts that may linger there.20 

It was this language that was cited by the court in Smith v. Rapid Transit, Inc., a case in which

there were data.

Since the Sargent  dictum cited in Smith originated in cases in which there were case-

specific facts that were only suggestive, but not compelling, the notion that probability is not

evidence seems to spring from the false idea that the uncertainty associated with mathematical

probability is no better than ungrounded speculation to fill in gaps in proof. There is of course a

world of difference between the two.  As Bayes’s theorem shows us, the former, when supported,

would justify adjusting our view of the probative force of particular evidence, while the latter

would not.  Nor is it correct, as we have seen, that the slightest real evidence (presumably an

eyewitness would qualify) should outweigh all the probability otherwise.

Yet the view that “bare” statistics are insufficient persists.21 In a recent case, Krim v.

pcOrder.com, Inc.,22 the issue was whether the plaintiffs had standing to sue for fraud in the sale

of securities under the federal securities laws.  Since the Securities Act of 1933 was designed to



23 Howard v. Wal-Mart Stores, Inc., 160 F.3d 358, 359-360 (7th Cir. 1998).  See also
Richard A. Posner, “An Economic Approach to the Law of Evidence,” 51 Stan. L. Rev. 1477,
1508–1509 (1999). For a rare dissent, see Daniel Shaviro, “Statistical Probability Evidence and

protect only purchasers in public offerings, the court held that at least one share had to be traced

to those issued in two public offerings by the company for the plaintiffs to have standing to sue. 

There were approximately 2.5 million shares issued in the public offerings and registered in

street name, Cede & Co., a nominee of the Depository Trust Company.  When  two of the

plaintiffs bought their shares from this pool there were intermingled with it shares held by

insiders that were also offered for sale.  Despite the fact that the pool of shares consisted of

99.85% public offering shares when one plaintiff bought 3000 shares and 91% public offering

shares when another bought his shares, there was no way of determining whether in fact they had

bought the public offering shares or the insider shares.  Assuming random selection from the

pool, plaintiffs’ expert computed the probability that at least one share would have been from the

public offering segment of the pool and the court did not dispute that this probability was near

100%. The court acknowledged that the burden of proof of standing was by a preponderance of

the evidence and that all evidence is probabilistic, but nevertheless ruled that probabilities were

not enough, citing Sargent and Smith. In particular, the court concluded that allowing the

probabilistic argument would contravene the statute by extending it to all purchasers of shares

from the pool, since all would have the same argument.  It also rejected the “fungible mass”

argument by which each purchaser would be deemed to have purchased his proportionate share

of public offering shares; allowing that argument, the court held,  would undermine the 

requirement that plaintiff trace his shares to the public offering. When the statute was passed, the

practice of holding shares in street name was not widespread and shares could in many cases be

traced.  Since that was no longer true, the remedy, the court concluded, was to amend the statute.  

   

Most commentators think that Smith was rightly decided. Their reasons vary. For

example, Judge Richard Posner, discussing Smith, argues that plaintiff needs an incentive to

ferret out case-specific evidence, in addition to the statistics, so he must lose unless he shows that

it was infeasible for him to get more particular evidence.23  Unless he makes that showing, his



the Appearance of Justice,” 103 Harv. L. Rev. 530 (1989)(criticizing arguments against the
sufficiency of statistics).

24 Commonwealth v. Clark, 229 Mass. 409, 415, 198 N.E. 641, ___(1935) (Lummus, J.).

failure to produce more evidence must be due either to the fact that the other evidence was

adverse or that he failed to make an investigation–and in either case he should lose. The Krim

court cited Judge Posner’s decision without noting the distinction that in Krim there was no other

evidence possible of which source the shares came from, and so the decision should fall within

Judge Posner’s caveat holding statistics sufficient in such cases.  Also, the hypothetical Judge

Posner discussed was a bare statistical preponderance of 51%, far from the overwhelming

probability in Kim.  Another objection is that if statistics were sufficient, Company B (the

Company with fewer buses) would enjoy immunity from suit, all the errors being made against

Company A, a significant economic advantage. But this assumes there are many such cases. If

accidents involving unidentified buses become numerous enough to be a statistical phenomenon,

the solution is an application of enterprise liability, the ultimate statistical justice, in which each

company bears its proportionate share of liability in each case.

Those who find “bare”statistical evidence intrinsically insufficient must explain why it

somehow should become magically sufficient if there is even a smidgeon of case-specific

evidence to support it.  

Fortunately the utterances in the early cases are only dicta that have not been uniformly

solidified into bad rules of evidence or law.  The actual rules are much sounder from a Bayesian

point of view.  The learned Justice Lummus may disparage statistical evidence by writing that the

fact that only a minority of men die of cancer would not warrant a finding that a particular man

did not die of cancer, and yet in an earlier case appraise the force of statistical proof by soundly

holding that “the fact that a great majority of men are sane, and the probability that any particular

man is sane, may be deemed by the jury to outweigh, in evidential value, testimony that he is

insane. . . [I]t is not the presumption of sanity that may be weighed as evidence, but rather the

rational probability on which the presumption rests.”24

When the event is unusual, but not so rare as to justify a presumption against it, we may



25 In re Agent Orange Liability Lit., 597 F. Supp. 740, 787–795(E.D.N.Y. 1984) and 611
F. Supp. 1223, 1231–1234 (Weinstein, J. 1985), aff’d in relevant part, 818 F.2d 145, 171–173
(2d Cir. 1987)(INSERT DESCRIPTION); Daubert v. Merrell Dow Pharmaceuticals, 43 F.3d
1311 (9th Cir. 1995)(Bendectin and birth defects); Hall v. Baxter Healthcare Corp., 1996 U.S.
Dist. Lexis 18960 at p. 15 (D. Ore. 1996)(silicone breast implants and connective tissue disease).

26 Hawkins v. Jones, Doc. Nos. P-2287/86K and P-3480/86K (N.Y. Family Ct. Jan. 9,
1987).

fairly require especially persuasive proof to overcome the weight of statistical or background

evidence.  That, arguably, is the reason for the rule requiring “clear and convincing” evidence in

civil cases in which the claimed event is unusual, as in cases involving the impeachment of an

instrument that is regular on its face. By this standard we stipulate the need for strong evidence to

overcome the negative background. When the statistics are very strong and negative to the

proposition asserted, particular proof may be precluded altogether.  In the Agent Orange,

Bendectin, and silicone-breast-implant litigations some courts refused to permit experts to testify

that defendants’ products caused plaintiffs’ harms, since the overwhelming weight of

epidemiological evidence showed no causal relation.25 It is entirely consistent with Bayes’s

theorem to conclude that weak case-specific evidence is insufficient when the background

evidence creates very strong prior probabilities that negate it. 

It is one thing to allow Bayes’s theorem to help us understand the force of statistical

evidence, it is another to make explicit use of  it in the courtroom.  The latter possibility has

provoked considerable academic and some judicial debate.  In paternity cases, where there is no

jury, some courts have permitted blood typing experts to testify to the posterior probability of

paternity by incorporating a 50% prior probability of paternity based on the non-blood-type

evidence in the case.  But in one case a judge rejected the testimony and recomputed the posterior

probability because he disagreed with the expert’s assumed prior.26

The better rule is that such evidence should not be admitted.  The issue was explored in a

criminal case, from New Jersey, in which a black  prison guard was prosecuted for having sexual

intercourse with an inmate, which is a crime under state law.  She became pregnant and the

child’s blood type matched that of the guard’s.  At the trial an expert testified that 1.9% of black

males had that blood type and so the exclusion rate was 98 to 99%.  Using a 50% prior she



27 “Paternity Test at Issue in New Jersey Sex-Assault Case,” N.Y. times, November 28,
1999 at B1. 

28 State v. Spann, 130 N.J. 484, 617 A.2d 247 (Sup. Ct. N.J. 1993).

29 Plemel v. Walter, 303 Ore. 262, 735 P.2d 1209 (1987).

30 Connecticut v. Skipper, 228 Conn. 610, 637 A.2d 1104 (1994).

testified that there was a 96.5% probability that the accused was the father.  On appeal, the

intermediate appellate court reversed the conviction, quoting from an opinion by the Wisconsin

Supreme Court:  “It is antithetical to our system of criminal justice to allow the state, through the

use of statistical evidence which assumes that the defendant committed the crime, to prove that

the defendant committed the crime.”27 This is clearly incorrect because the prior in Bayes’s

theorem does not assume that the accused committed the crime, but only that there was a

probability that he did so. The court was right, however, in refusing to let the expert testify based

on his prior because he had no expertise in picking a prior and because testimony based on his

prior would not be relevant for jurors who had different priors. On final appeal, the Supreme

Court of New Jersey affirmed the intermediate court’s reversal of the conviction, suggesting that

the expert should have given the jurors posterior probabilities for a range of priors so they could

match their own quantified prior views with the statistical evidence.28 If the expert cannot

use his own prior, is the New Jersey Supreme Court right that she can give jurors a formula and

tell them to insert their prior, or give them illustrative results for a range of priors? In addition to

New Jersey, one other state supreme court has suggested that an expert may give illustrative

results for a range of priors.29 At least one court has held otherwise.30 

Another, perhaps better way of proceeding, is to allow the expert to describe the effect of

the likelihood ratio associated with the test without making any assumption about the prior

probabilities. Thus the expert could testify that we are a thousand times more likely to see a

matching print if defendant left it than if someone else did.  Or, alternatively, the odds that

defendant left the print are increased a thousand fold by finding a match.  In both formulations

the expert makes no assumption about prior probabilities, but only testifies to the change in



31 Committee on Scientific Assessment of Bullet Lead Elemental Composition
Comparison, “Forensic Analysis: Weighing Bullet Lead Evidence,” 96, 97, 112 (The National
Academies Press, 2004). 

32 See, e.g., David L. Faigman & A.J. Baglioni, Jr., “Bayes’ Theorem in the Trial
Process,” 12 Law & Hum. Rel. 1 (1988).

33  For such a person the prior odds are 0.25/0.75 = 1/3. The likelihood ratio is 1 (we are
certain that the palm print would like defendant’s if he left it) divided by 1/1000 (the rate of such
prints in the population, if he didn’t leave it), or 1,000. Applying Bayes’s theorem, 1/3  x 1,000 =
333.33 (the posterior odds).  The posterior probability of guilt is thus 333.33/334.33 = 0.997. 

probabilities or odds associated with the test.  One expert panel has endorsed this approach.31    

  

However this issue may be resolved, as a practical matter the proper scope of Bayes’s

theorem in the courtroom is probably not all that important. Some simulation studies suggest that

jurors simply ignore expert testimony making explicit use of Bayes’s theorem.32  What is

important is the larger teaching that is itself often ignored: a matching trace does not have to be

unique or nearly unique to the defendant to make a powerful case when combined with other

evidence. 

Summary

The probability of an event is generally interpreted either as the relative frequency of the

event in a long series of trials or as the degree of belief (as in “the odds” on the event. Classical

statisticians calculate such probabilities for observed data given assumed states of nature. 

Bayesian statisticians, and in some cases classical statisticians, calculate ‘inverse” probabilities

of states of nature given the observed data.  These two conditional probabilities usually are not

the same.  The legal standards of beyond-a-reasonable-doubt in criminal cases and more-likely-

than-not in civil cases are Bayesian because they invoke the probabilities of past events given the

Bayes’s theorem teaches us that the adjustments made by the students are too small.  For the

person whose prior was 0.25, his or her posterior probability should be 0.997.33  At the upper end

of the range, the prior is 0.75 and the posterior probability should be 0.9997.  The difference

between these posterior probabilities is not significant for decision purposes; we convict in either

case.  The point is that underestimation of the force of statistical evidence (the 1 in a 1,000



statistic) when it is informally integrated with other evidence is a source of systematic bias that

is far more important than the variation due to subjectivity in estimating the prior probability of

guilt, even if we assume that the subjective variation is entirely due to error.

Besides correcting for bias, Bayes’s theorem helps shed some light on the value of traces

used for identification. Take the prosecutor’s and defendant’s fallacies previously discussed.  We

see from Bayes’s theorem that these two arguments depend on the assumed prior probabilities. 

If the prior probability that the accused was the source of the trace is 50%, then the prior odds

are 1 (.50/.50) and the posterior odds given the match are equal to the likelihood ratio, which is

the reciprocal of the population frequency.  Thus if the population frequency of an observed

trace is 1 in a 1,000, the posterior odds that the accused left it are 1,000 and the posterior

probability of the accused having left the print is 1000/1001 = 0.999, which is as the prosecutor

asserted.  The evidence is so powerful that it could not be excluded on the ground that the jury

might overvalue it.

On the other hand, if there is no evidence of responsibility apart from the trace, the

accused is no more likely to have left it than anyone else in the relevant population who shared

the trace.  If N is the size of the relevant population (excluding the accused) then there are

N/1000 people in the population who share the trace, plus the accused.  The probability the

accused left the print is     If we apply Bayes’s theorem,
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assuming there is no other evidence against the accused other than the trace, the prior probability

of guilt is 1/(N + 1), and the prior odds on guilt are simply 1/N. Since the likelihood ratio is still

1,000, the posterior odds are 1,000/N, and the posterior probability

is  which is as the accused argued.  So while the prosecutor’s
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fallacy assumes a 50% prior probability that the accused left the print, the defendant’s fallacy

assumes a prior probability no greater than  that of a randomly selected person.

Thus the admissibility and sufficiency of population frequency data may, as a theoretical

matter, turn on the strength of the other evidence in the case.  One must say as a theoretical

matter because as a practical matter it is hard to imagine a real criminal  case in which the other

evidence would not suffice to permit the jury also to hear the statistical evidence.  The

prosecutor’s fallacy is likely to be closer to the truth than the defendant’s fallacy. 

In civil cases, the story is more complicated.  

In some early cases in which there were no data, a few judges muddied the waters by



34 96 Me. 207, 52 A. 771 (1902).

35 Id. at 217-218, 52 A. at 774.

36 307 Mass. 246, 29 N.E.2d 825 (1940)
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sounding the theme that quantitative probability is not evidence.  For example, in Day v. Boston

& Maine R.R.,34 a case involving the need to determine the cause of death in a railway accident,

but in which there was really no evidence of how the accident had occurred, Judge Emery

gratuitously commented that mathematical probability was akin to pure speculation: 

Quantitative probability – is only the greater chance.  It is not proof, nor even probative
evidence of the proposition to be proved.  That in one throw of the dice there is a quantitative
probability, or greater chance, that a less number of spots than sixes will fall uppermost [the
probability is 35/36] is no evidence whatever that in a given throw such was the actual result . . .
The slightest real evidence that sixes did in fact fall uppermost would outweigh all the
probability otherwise.35

This theme was picked up in Sargent v. Massachusetts Accident Company,36 in which the

court had to decide whether the deceased, canoeing in the wilderness, met his end by accident

(which would have been within the insurance policy) or by other causes such as starvation

(which would not). Of course, there were no data. Citing Day, Justice Lummus elaborated, in

much-quoted language,  the theme of mathematical probability as insufficient proof:

It has been held not enough that mathematically the chances somewhat favor a
proposition to be proved; for example, the fact that colored automobiles made in the current year
out-number black ones would not warrant a finding that an un-described automobile of the
current year is colored and not black, nor would the fact that only a minority of men die of
cancer warrant a finding that a particular man did not die of cancer. The weight or
preponderance of the evidence is its power to convince the tribunal which has the determination
of the fact of the actual truth of the proposition to be proved. After the evidence has been
weighed, that proposition is proved by a preponderance of the evidence if it is made to appear
more likely or probable in the sense that actual belief in its truth, derived from the evidence,
exists in the mind or minds of the tribunal notwithstanding any doubts that may linger there.37 

It was this language that was cited by the court in Smith v. Rapid Transit, Inc., a case in

which there were data.

Since the Sargent  dictum cited in Smith originated in cases in which there were case-



38 See, e.g., Guenther v. Armstrong Rubber Co., 406 F.2d 1315 (3rd Cir. 1969) (holding
that although 75% to 80% of tires marketed by Sears were made by defendant manufacturer,
plaintiff would have lost on a directed verdict even if he had been injured by a tire bought at
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specific facts that were only suggestive, but not compelling, the notion that probability is not

evidence seems to spring from the false idea that the uncertainty associated with mathematical

probability is no better than ungrounded speculation to fill in gaps in proof. There is of course a

world of difference between the two.  As Bayes’s theorem shows us, the former, when

supported, would justify adjusting our view of the probative force of particular evidence, while

the latter would not.  Nor is it correct, as we have seen, that the slightest real evidence

(presumably an eyewitness would qualify) should outweigh all the probability otherwise.

Yet the view that “bare” statistics are insufficient persists.38 In a recent case, Krim v.

pcOrder.com, Inc.,39 the issue was whether the plaintiffs had standing to sue for fraud in the sale

of securities under the federal securities laws.  Since the Securities Act of 1933 was designed to

protect only purchasers in public offerings, the court held that at least one share had to be traced

to those issued in two public offerings by the company for the plaintiffs to have standing to sue. 

There were approximately 2.5 million shares issued in the public offerings and registered in

street name, Cede & Co., a nominee of the Depository Trust Company.  When  two of the

plaintiffs bought their shares from this pool there were intermingled with it shares held by

insiders that were also offered for sale.  Despite the fact that the pool of shares consisted of

99.85% public offering shares when one plaintiff bought 3000 shares and 91% public offering

shares when another bought his shares, there was no way of determining whether in fact they had

bought the public offering shares or the insider shares.  Assuming random selection from the

pool, plaintiffs’ expert computed the probability that at least one share would have been from the

public offering segment of the pool and the court did not dispute that this probability was near

100%. The court acknowledged that the burden of proof of standing was by a preponderance of

the evidence and that all evidence is probabilistic, but nevertheless ruled that probabilities were

not enough, citing Sargent and Smith. In particular, the court concluded that allowing the

probabilistic argument would contravene the statute by extending it to all purchasers of shares



40 Howard v. Wal-Mart Stores, Inc., 160 F.3d 358, 359-360 (7th Cir. 1998).  See also
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from the pool, since all would have the same argument.  It also rejected the “fungible mass”

argument by which each purchaser would be deemed to have purchased his proportionate share

of public offering shares; allowing that argument, the court held,  would undermine the 

requirement that plaintiff trace his shares to the public offering. When the statute was passed, the

practice of holding shares in street name was not widespread and shares could in many cases be

traced.  Since that was no longer true, the remedy, the court concluded, was to amend the statute. 

    

Most commentators think that Smith was rightly decided. Their reasons vary. For

example, Judge Richard Posner, discussing Smith, argues that plaintiff needs an incentive to

ferret out case-specific evidence, in addition to the statistics, so he must lose unless he shows

that it was infeasible for him to get more particular evidence.40  Unless he makes that showing,

his failure to produce more evidence must be due either to the fact that the other evidence was

adverse or that he failed to make an investigation–and in either case he should lose. The Krim

court cited Judge Posner’s decision without noting the distinction that in Krim there was no

other evidence possible of which source the shares came from, and so the decision should fall

within Judge Posner’s caveat holding statistics sufficient in such cases.  Also, the hypothetical

Judge Posner discussed was a bare statistical preponderance of 51%, far from the overwhelming

probability in Kim.  Another objection is that if statistics were sufficient, Company B (the

Company with fewer buses) would enjoy immunity from suit, all the errors being made against

Company A, a significant economic advantage. But this assumes there are many such cases. If

accidents involving unidentified buses become numerous enough to be a statistical phenomenon,

the solution is an application of enterprise liability, the ultimate statistical justice, in which each

company bears its proportionate share of liability in each case.

Those who find “bare”statistical evidence intrinsically insufficient must explain why it

somehow should become magically sufficient if there is even a smidgeon of case-specific

evidence to support it.  
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Fortunately the utterances in the early cases are only dicta that have not been uniformly

solidified into bad rules of evidence or law.  The actual rules are much sounder from a Bayesian

point of view.  The learned Justice Lummus may disparage statistical evidence by writing that

the fact that only a minority of men die of cancer would not warrant a finding that a particular

man did not die of cancer, and yet in an earlier case appraise the force of statistical proof by

soundly holding that “the fact that a great majority of men are sane, and the probability that any

particular man is sane, may be deemed by the jury to outweigh, in evidential value, testimony

that he is insane. . . [I]t is not the presumption of sanity that may be weighed as evidence, but

rather the rational probability on which the presumption rests.”41

When the event is unusual, but not so rare as to justify a presumption against it, we may

fairly require especially persuasive proof to overcome the weight of statistical or background

evidence.  That, arguably, is the reason for the rule requiring “clear and convincing” evidence in

civil cases in which the claimed event is unusual, as in cases involving the impeachment of an

instrument that is regular on its face. By this standard we stipulate the need for strong evidence

to overcome the negative background. When the statistics are very strong and negative to the

proposition asserted, particular proof may be precluded altogether.  In the Agent Orange,

Bendectin, and silicone-breast-implant litigations some courts refused to permit experts to testify

that defendants’ products caused plaintiffs’ harms, since the overwhelming weight of

epidemiological evidence showed no causal relation.42 It is entirely consistent with Bayes’s

theorem to conclude that weak case-specific evidence is insufficient when the background

evidence creates very strong prior probabilities that negate it. 

It is one thing to allow Bayes’s theorem to help us understand the force of statistical

evidence, it is another to make explicit use of  it in the courtroom.  The latter possibility has

provoked considerable academic and some judicial debate.  In paternity cases, where there is no

jury, some courts have permitted blood typing experts to testify to the posterior probability of
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paternity by incorporating a 50% prior probability of paternity based on the non-blood-type

evidence in the case.  But in one case a judge rejected the testimony and recomputed the

posterior probability because he disagreed with the expert’s assumed prior.43

The better rule is that such evidence should not be admitted.  The issue was explored in a

criminal case, from New Jersey, in which a black  prison guard was prosecuted for having sexual

intercourse with an inmate, which is a crime under state law.  She became pregnant and the

child’s blood type matched that of the guard’s.  At the trial an expert testified that 1.9% of black

males had that blood type and so the exclusion rate was 98 to 99%.  Using a 50% prior she

testified that there was a 96.5% probability that the accused was the father.  On appeal, the

intermediate appellate court reversed the conviction, quoting from an opinion by the Wisconsin

Supreme Court:  “It is antithetical to our system of criminal justice to allow the state, through the

use of statistical evidence which assumes that the defendant committed the crime, to prove that

the defendant committed the crime.”44 This is clearly incorrect because the prior in Bayes’s

theorem does not assume that the accused committed the crime, but only that there was a

probability that he did so. The court was right, however, in refusing to let the expert testify based

on his prior because he had no expertise in picking a prior and because testimony based on his

prior would not be relevant for jurors who had different priors. On final appeal, the Supreme

Court of New Jersey affirmed the intermediate court’s reversal of the conviction, suggesting that

the expert should have given the jurors posterior probabilities for a range of priors so they could

match their own quantified prior views with the statistical evidence.45

If the expert cannot use his own prior, is the New Jersey Supreme Court right that she can give

jurors a formula and tell them to insert their prior, or give them illustrative results for a range of

priors? In addition to New Jersey, one other state supreme court has suggested that an expert
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may give illustrative results for a range of priors.46 At least one court has held otherwise.47 

Another, perhaps better way of proceeding, is to allow the expert to describe the effect of

the likelihood ratio associated with the test without making any assumption about the prior

probabilities. Thus the expert could testify that we are a thousand times more likely to see a

matching print if defendant left it than if someone else did.  Or, alternatively, the odds that

defendant left the print are increased a thousand fold by finding a match.  In both formulations

the expert makes no assumption about prior probabilities, but only testifies to the change in

probabilities or odds associated with the test.  One expert panel has endorsed this approach.48    

  

However this issue may be resolved, as a practical matter the proper scope of Bayes’s

theorem in the courtroom is probably not all that important. Some simulation studies suggest that

jurors simply ignore expert testimony making explicit use of Bayes’s theorem.49  What is

important is the larger teaching that is itself often ignored: a matching trace does not have to be

unique or nearly unique to the defendant to make a powerful case when combined with other

evidence. 

Sum

mary

The probability of an event is generally interpreted either as the relative frequency of the

event in a long series of trials or as the degree of belief (as in “the odds” on the event. Classical

statisticians calculate such probabilities for observed data given assumed states of nature. 

Bayesian statisticians, and in some cases classical statisticians, calculate ‘inverse” probabilities

of states of nature given the observed data.  These two conditional probabilities usually are not



the same.  The legal standards of beyond-a-reasonable-doubt in criminal cases and more-likely-

than-not in civil cases are Bayesian because they invoke the probabilities of past events given the

evidence.  In real-life situations, calculations of Bayesian probabilities generally must begin with

prior probabilities that do not express relative frequencies, but rather are personal or subjective,

reflecting degrees of belief.  There is a dispute in the statistical community whether the use of

personal probabilities is valid.  Credibility beliefs can be combined with relative frequency

evidence using Bayes's theorem, which states that the posterior odds on an event are equal to the

prior odds times the likelihood ratio for the event.  There is a legal debate over whether an expert

may make explicit use of Bayes’s theorem by giving fact finders posterior probabilities for a

range of priors.  Less controversial would be to limit the expert to describing the change in

probabilities or posterior odds associated with the test, without making any assumption about

prior probabilities.  However that is resolved, Bayes's theorem teaches us that identification

evidence need not point to the defendant uniquely to make a powerful case when combined with

other evidence.  
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