
SUPPLEMENTARY NOTES: CHAPTER 1

1. Groups

A group G is a set with single binary operation which takes two elements a, b ∈ G
and produces a third, denoted ab and generally called their product. (Mathspeak:
We have a mapping G × G → G in which the image of the pair a, b is denoted by
ab.) In general ab 6= ba. This multiplication must satisfy the following axioms:

(1) Associativity : If a, b, c ∈ G, then (ab)c = a(bc).
(2) Existence of a unit element : There exists a “neutral” element, e, usually

called the unit element, such that for any a ∈ G we have ea = ae = a.
(3) Existence of inverses: For every group element a there exists an element

denoted a−1 such that aa−1 = e = a−1a.

The third axiom tacitly implies that the inverse of an element is unique. It is,
and the unit element is also unique. These are simple exercises.

If ab = ba for all a, b ∈ G then the group is called commutative or Abelian (in
honor of Niels Henrik Abel, 1802-1829)

The group law allows us to multiply only two elements at a time, so there are
two ways to form the product of three elements. The associative law says that these
are equal, so we can simply write abc without parentheses for the product.

Exercise: Write down the five ways of forming a product of four elements and
prove that they are equal. Now prove (by induction), that all ways of forming a
product of n elements are equal for any ln. A product of the form a1a2 · · · an is
therefore unambiguous; we do not have to use parentheses. We will see a conceptual
proof of this.

An Abelian group is sometimes written in additive form: We write a+ b instead
of ab, denote the unit element by 0, so a + 0 = 0 + a = a and the (additive)
inverse of a by −a. When an abelian group is written this way it is sometimes
called an additive group. The most important example of an additive group is the
ordinary integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } with addition as the operation,
usually denoted by Z (from the German, Zahl, number).

Group that we will need to understand when dealing with determinants is the
permutation group of a set X, denoted SymX , but to describe this group ade-
quately we first we need some basic ideas about sets and mappings.

If we have a mapping f : X → Y from a set X to a set Y and another mapping
g : Y → Z, then their composite gf is the combined map

X
f−−−−→ Y

g−−−−→ Z

which sends an element x ∈ X to g(f(x)). In the present context we will call this
the ‘product’ of f and g, but don’t confuse it with he concept of product when we
are dealing with functions. (There the functions have realtor complex values, and
by the product function we usually mean f(x)g(x).) The sets X,Y and Z don’t
have to be different sets; we could be talking about maps from one set X to itself.
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Suppose now that we have sets X,Y, Z,W (which don’t all have to be different –
they could all be the same set X) and mappings f : X → Y, g : Y → Z, h : Z →W .
We can picture this by the following diagram

X
f−−−−→ Y

g−−−−→ Z
h−−−−→ W.

Then the two triple composites h(gf) and (hg)f both mean exactly the same
thing, send x ∈ X to h(g(f(x))). The associative law is immediate and we don’t
need an parentheses. The same is true for the composite of any number of maps.

A map f from a set X to a set Y (written as f : X → Y ) is called one-to-one
or 1-1 if distinct elements of X are sent to distinct elements of Y . Such a map
is often also commonly called an “injection”. A map f : X → Y is called onto if
every y ∈ Y is the image of some x ∈ X, that is, if there is an x ∈ X such that
f(x) = y. Such a map is also commonly called a surjection. If f is both 1-1 and
onto, something which is commonly called a bijection, then for every y ∈ Y there
is exactly one x ∈ X with f(x) = y, so we can define a mapping from Y back to
X by sending y back to its ‘preimage’ x. This map is denoted f−1. (Don’t confuse
this with 1/f when one is dealing with functions.) It is the inverse of f in the
sense that f−1f(x) = x for all x ∈ X, that is f−1f is the ‘identity’ map idX , and
ff−1(y) = y for all y ∈ Y , so ff−1 = idY . Notice that if f has an inverse in this
sense then it must be a bijection. Why? A bijection from a set X to itself is called
a permutation of X.

The group SymX is just the set of all permutations of X. The product of
permutations (in the sense in which we are now using product) has just been shown
to be associative. There is an identity element in SymX , namely idX , and every
f ∈ SymX has an inverse. Notice that if X is finite then a mapping f : X → X
is 1-1 if and only if (abbreviated ‘iff’) it is also onto, but in the infinite case this
doesn’t necessarily hold. Give examples.

Notice that (fg)−1 = g−1f−1, for if f(x) = y and g(y) = z then to get the
inverse operation you must first take z back to y and then y back to x. (“The
inverse operation of putting on your jacket and then your coat is first to take off
the coat and then the jacket.”) This is true in any group, (ab)−1 = b−1a−1. Notice
that if you write out abb−1a−1 then first b and b−1 cancel and then a and a−1 can
cancel.

If we have two groups, G1 and G2 then a homomorphism (or these days, simply
a morphism) from G1 to G2 is a map f : G1 → G2 which “preserves” or “respects”
products. This means that f(ab) = f(a)f(b) for all A, b ∈ G1. In modern terminol-
ogy, a homomorphism that is 1-1 is called a monomorphism and one that is onto is
an epimorphism.

Exercise: Prove that (1) any morphism f : G1 → G2 preserves the unit element,
i.e., if e1 is the unit element of G1 and e2 that of G2, then f(e1) = e2, and that it
also preserves inverses, i.e., that f(a−1) = f(a)−1 for all a ∈ G1.

If f : G1 → G2 which is both 1-1 is a group morphism and is also a bijection,
then its inverse map is also a group morphism. Prove this. A morphism which
has in inverse morphism is called an isomorphism, so this f is an isomorphism.
“Morphism” is a very broad concept in mathematics. It means a mapping which
preserves whatever kind of structure we are dealing with. In this case it happens
to be group structure. A group morphism which is 1-1 and onto as it happens
turns out to be an isomorphism. This is also true for morphisms of vector spaces,
which we will encounter in Chap. 3. For some complicated kinds of mathematical
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structures a morphism which is a bijection has an inverse map whites not necessarily
a morphism, but we will not have to deal with such structures in this course.

Isomorphic groups G1 and G2 cannot be told apart by any internal structure.
They are both sets, and the objects of one may be painted red and the other
blue, but corresponding objects multiply in the same way. A mapping between
sets which is 1-1 is commonly called an injection, a mapping which is onto is a
surjection, one which is both is a bijection. The terminology is originally French
and mathematicians have had to adapt to it from the older 1-1 and onto. Notice
that if X and Y are finite sets with the same number of elements then there is a
bijection between them. In fact, to say that X has n elements means that there is
a bijection between X and the set of integers {1, 2, . . . , n}. In general, however, the
only meaning we can give to the statement that two sets have the same number of
elements is that there exists a bijection between them. An infinite set X is called
countable if there is a bijection between it and the set {1, 2, 3, · · · } of all positive
integers, but there are infinite sets which are so big that this is not possible, for
example the set of all real numbers R.

Suppose that we have a bijection φ : Y → X between two sets. (Humor me as to
the direction.) Then we can construct an isomorphism SymX → SymY as follows.
If f : X → X is an element of SymX then send f to the composite map φfφ−1.
(That is, if you wan to know where an element y ∈ Y goes, pull it back to X by the
inverse of φ, opera on it by f inside X, and then push it forward by φ to Y again.
It is easy to check that this really is a morphism. Suppose that f1, f2 ∈ SymX. We
must show that φf1f2φ

−1 = φf1φ
−1 · φf2φ−1, where I have put a · in the middle

to make reading the right side easier, but it is clear that the φ−1 · φ in the middle
simply cancel out.

It follows that if X and Y both have n elements (where n is some positive finite
number), then they are isomorphic, and both are isomorphic to the symmetric
group on the set {1, . . . , n}. The latter group is simply called “the” symmetric
group or “the” permutation group on n elements and denoted Sn. It will play a
major role in the study of determinants. Its size grows very rapidly with n, since
it contains n! elements. The number of elements in a group G is commonly called
its order and in older texts was usually denoted by |G|. Recently, however, #G has
come into favor since the absolute value sign has acquired so many different uses.

The group axioms given above are due to Arthur Cayly (1821-1895) who also
made the following fundamental observation. Suppose that G is any group and
that a ∈ G. Define a map fa : G → Gby setting fa(x) = ax for all x ∈ G. It
is a permutation of the underlying set of elements of G because it has an inverse,
namely fa−1/ Check this. The map fa doesn’t respect the multiplication in G, but
the map which sends a ∈ G to fa ∈ SymG is a morphism of G into SymG. In fact
this is precisely what the associative law says. For if x is an arbitrary element of
G, then by definition fabx = (ab)x, while fafbx = a(bx), and these are equal, so
we have fab = fafb. Moreover, the map a 7→ fa (read this as “a maps to fa) is
a monomorphism, for if fa = fb, then, in particular fa(1) = fb(1), i.e., a1 = b1
or a = b. Now the image of G inside SymG, denote it by fG, satisfies the full
associative law since all of SymG does, one doesn’t need any parentheses to make
multiplication unambiguous. Therefore, so does G.

This is the sort of abstract reasoning which mathematicians love and which you
might not like in this particular instance since the argument by induction is certainly
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much simpler to understand. On the other hand, it sometimes works magic as we
will see when we define determinants.

2. Rings

Hoffman and Kunze give the formal definition of a ring at the beginning of
Chap. 5 on determinants. Read their section 5,1. In brief, a ring is a set K with
two operations, addition and multiplication; the sum of x and y is denoted by
x + y and their product by xy. Under addition, K is a commutative group. The
multiplication is associative but not necessarily commutative. The two operations
are linked by the distributive laws,

x(y + z) = xy + xz, (y + z)x = yx+ zx.

If xy = yx for all X, y ∈ K then K is called commutative. If there is an element 1
in K such that 1x = x1 = x for al x then this element is unique Why? and Hoffman
and Kunze say that K is a ring with identity. The more recent terminology is to
call K a unital ring. HK use the notation K for any ring (but most of the time is
commutative). I will use a slightly different convention. An arbitrary ring will be
denoted by K, but for a commutative unital ring I will always write k.

The most important example of a commutative unital ring is the ordinary in-
tegers, Z. Notice that division is not possible in this ring; the quotient of two
integers is not an integer. However, there are two elements in this ring which have
inverses in the ring, namely 1 and -1. Elements of a commutative unital ring which
do have inverses in the ring are generally called units (but there is only one ‘unit
element’). In anon-commutative ring they are just called invertible elements. The
n × n matrices with coefficients in a ring K form a non-commutative ring which
will be discussed below.

3. Fields

A field F is a commutative unital ring in which every element other than zero
is a unit. Briefly, one can add, subtract, multiply, and divide (except by 0) just
as we can with real numbers. The fields with which you may be most familiar are
the real numbers, generally denoted by R, and the complex numbers C. But notice
that the set of rational numbers, i.e.(not necessarily proper) fractions m/n, where
m and n are integers with n 6= 0 is already a field, denoted Q (for quotient), It is
a subfield (i.e., a field contained in ) R, which in turn is a subfield of C. The field
Q has no subfields other than Q itself Prove this. but there are many interesting
intermediate fields between Q and R. HK give an example, p. 4 Example 4. of a
field which is generally denoted by Q(

√
2. There are no intermediate fields between

R and C. This will be very easy to prove once we have introduced the concept of
the dimensions a vector space, but if you already know what that is, you may turn
in the proof for extra credit.

As HK point out, p.3, there are fields which do not behave at all like subfields of
C, and in fact they may have only a finite number elements. These are fundamental
in an area of mathematics called Number Theory. They were discovered by one of
brightest mathematical minds of all time, Évariste Galois (1811-1831) who died as
a result of a duel over a prostitute at the age of 20. The smallest of these “Galois”
fields contains only two elements, 0 and 1 with the rule 1 + 1 = 0. (This field is
generally denoted F2.) We do not need to know about such fields in this course,
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where you may assume that all our fields are subfields of C (including C itself,
which will be very important), but it may at some point be useful for you to know
that they exist.

4. Matrix rings

An important class of non-commutative rings comes from the multiplication of
matrices with coefficients in a ring K. For many purposes K can be an arbitrary
ring, not necessarily commutative, so for the moment (unlike HK) we make no
assumptions about K. An m × nmatrix A with coefficients in K is a rectangular
array of elements of K arranged in m rows and n columns. The element in the (i, j)
position is denoted Aij . (HK are a little more careful, see p. 141.) A 1× n matrix
is called a row vector of length n; an n× 1 matrix is a column vector of length n.
(Later, when K is a field, see below, we may say ‘dimension’ n instead of length.)
Suppose now that α is a row vector of length n and that β is a column vector of
the same length n, both with coefficients in K, so

α = (a1, . . . , an), β =


b1
·
·
·
bn

 , where a1, . . . , an, b1, . . . , bn ∈ K.

Their product is then defined to be

αβ = a1b+a2b2 + · · ·+ anbn =

n∑
k=1

akbk,

using the standard summation notation. Denote the ith row of the m×n matrix A
by Ai,•, a row vector length n. Suppose now that B is an n× p matrix and denote
its j column by B•,j , a column vector of also of length n. Then the product AB is
defined by setting

(AB)ij = Ai,•B•,j =

n∑
k=1

Aikbkj .

That is, the (i, j) entry in AB is the product of the ith row of A with the jth
column of B. Notice that AB is an m×p matrix. This multiplication is associative
in the following sense. If A is an m× n matrix, B an n× p matrix and C a p× q
matrix then (AB)C and A(BC) are both well-defined m× q matrices and we have
(AB)C = A(BC). HK prove this on p. 19 under the assumption that K is a field,
because we will need that when row=reducing matrices, but the proof actually
requires no more than that K be a ring.

We can add and subtract matrices if they have the same dimensions: If A and
B are both m× n then (A± B)ij = Aij ± Bij and there is a neutral element, the
m × n matrix all of whose entries are 0. This matrix is also frequently denoted
simply by 0 without specifying its dimensions. The set of all m× n matrices with
coefficients in K, denoted Km,n is therefore an additive group.

Consider now the set Kn,n of square n × n with coefficients in K. Since we
can form products of these, it has both an addition and a multiplication and the
distributive laws hold Prove this. so it is a ring. If K is unital, then this ring also
has a unit element denoted I or In when we want to be explicit about its size,
which is the matrix whose entries on the main diagonal are all equal to one and all
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whose other entries are 0. In particular, I2 =

[
1 0
0 1

]
. Another way to describe it

is with the very useful Kronecker delta function, defined by

δij =

{
1 if i = j

0 if i 6= j.

Here i and j are integers between 1 and n. The (i, j) entry of I is just δij .
All the non-zero entries of I are on the diagonal. Any matrix having non-zero

entries only on the diagonal is called a diagonal matrix. An n× n diagonal matrix
with diagonal entries c1, . . . , cn is denoted diag(c1, . . . , cn). The add and multiply
in a simple way:

diag(c1, . . . , cn) + diag(c′1, . . . , c
′
n) = diag(c1 + c′1, . . . , cn + c′n)(1)

diag(c1, . . . , cn) diag(c′1, . . . , c
′
n) = diag(c1c

′
1, . . . , cnc

′
n).(2)

Notice (from the second line) that diagonal matrices commute, and that if none of
the ci is zero then the inverse of diag(c1, . . . , cn is diag(c−11 , . . . , c−1n ). If A is an
m× n matrix, then diag(c1, . . . , cm)A is obtained by multiplying the ith row of A
by ci, and Adiag(c′1, . . . , c

′
n) is obtained by multiplying the jth column of A by c′j .

(I have tried to be careful about the indices.)
Elementary matrices. Here, in more explicit form are the elementary matrices,

cf p. 20 of HK, corresponding to the elementary row operations on p.6 1. If
c 6= 0 then diag(1, . . . , 1, c (ith place), 1, . . . , 1) is the elementary matrix which,
when multiplied from the left, multiplies the ith row of A by c, and leaves the others
unchanged. Its inverse is obtained by replacing c by c−1. 2. The matrix whose
entries are all 0 except for a 1 in the (i, j) place is denoted by eij . (Its dimensions
are usually unmentioned and determined by the context.) The elementary matrix
(I+ceij) by adds c times the jth row of A to its ith row. Its inverse is I−ceij . 3. The
elementary matrix which interchanges the ith and jth rows of A ( by multiplication
from the left) is obtained from the identity matrix I by interchanging the ith and
jth rows of I. The elementary row operations on A can therefore all be described
as multiplication from the left by corresponding elementary matrices.

A permutation which interchanges two elements of a set X, leaving all the others
fixed, is called a transposition. If we have a transposition t and do it twice then noth-
ing has moved, t2 is just the identity element of SymX ; the inverse of a transposition
is itself. It follows follows that if we have a product of transpositions, t1t2 · · · tk
then its inverse is the same product in reverse order, (t1t2 · · · tk)−1 = tk · · · t2t1.
When X is the set of integers {1, . . . , n}, then the transposition which interchanges
i and j is denoted simply by (i, j), and the identity elements denoted by e.

We will need the following convention: a product of zero elements in a group is
the identity element of the group. (The reason is that if you multiply a product
of k elements by a product of zero elements you should still just have the original
product of k elements.)

Theorem 1. If X is finite then every element of SymX is a product of transposi-
tions.

Proof. The proof will be by induction on the number of elements in X. If
this is n then we can assume, wlog (without loss of generality) that X is just
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the set of integers {1, . . . , n}, because SymX is isomorphic to Sn. There is noting
to prove when n = 1 since S1 contains only the identity. The theorem is trivial
whenn = 2 since S2 consists only of e and (1,2). So we may assume that n > 3
and suppose that the theorem is true for n − 1. Let σ be an arbitrary element
of Sn. We wish to show that σ is a product of transpositions. Suppose that
σ(n) = n then σ is really only permuting 1, . . . , n− 1, so we know by the induction
hypothesis that σ is a product of transpositions. So suppose that σ(n) = where
m 6= n. Then (m,n)σ leaves n fixed (since σ carried n to m and (m,n) carried it
back to n. Therefore (m,n)σ is a product of transpositions, t1t2 · · · tk. But then
σ = (m,n)(m,n)σ = 9m,n)t1t2 · · · tk, a product of transpositions. 2

So every permutation of {1, . . . , n} can be written as a product of transpositions.
This can generally be done in more than one way, but we will prove later that if some
permutation σ can be written as a product of an even number of transpositions,
then any expression for σ as a product of transpositions will always have an even
number of factors, and similarly for odd. Permutations are therefore accordingly
called even or odd. A single transposition is odd.

A permutation matrix P is one which is obtained from the identity by a permu-
tation of the rows of the identity matrix. If this permutation is σ, then PA is the
matrix obtained from A by permuting its rows according to σ. Prove this. Prove
that any permutation matrix canals be obtained by permuting the columns of I,
and that you get the same matrix if you permute the rows of I by σ or its columns
by (σ)−1.


