Five Minutes of Logic (Spring'00: Math 141)*

Max Kanovich

Math 141, TTh 9-10:30 DRL A2

Contents

1 Proofs 1
2 Logical Connectives 1
2.1 De Morgan Dual Laws 2
3 Quantifiers. Universal Quantifier. Existential Quantifier 2
3.1 De Morgan Dual Laws 3
3.2 Renaming Dummy Variables 3
$3.3 \forall \exists$ versus $\exists \forall$ 4

1 Proofs

Definition 1.1 By a proof of the assertion $A \rightarrow B$, we mean a finite list of statements

$$
W_{1}, W_{2}, \ldots, W_{n}
$$

where
(a) $W_{1}=A$ (the hypothesis),
(b) $W_{n}=B$ (the conclusion),
(c) each of the statements W_{i} is
(c1) either an axiom
(c2) or a consequence of the previous statements: $\quad W_{1}, W_{2}, \ldots, W_{i-1}$, according to a certain logical rule of inference.

2 Logical Connectives

The study of logic is concerned with the truth or falseness of statements.
We invoke the following logical connectives:
(i) negation \neg

[^0](ii) conjunction \&
(iii) disjunction \vee
(iv) implication \rightarrow

Definition 2.1 A statement H constructed from various substatements A, B, C, \ldots, and which is true no matter whether A, B, C, \ldots are true or false, is called a tautology.

2.1 De Morgan Dual Laws

Proposition 2.1

$$
\begin{align*}
\neg(A \vee B) & =(\neg A) \&(\neg B), \tag{1}\\
\neg(C \& D) & =(\neg C) \vee(\neg D) . \tag{2}
\end{align*}
$$

3 Quantifiers. Universal Quantifier. Existential Quantifier

Let $A(x)$ denote an assertion about x :
For each choice c of x (whatever value c of x we take), the assertion $A(c)$ is either true or false.
(a) "For every $x \in S, A(x)$ is true" is abbreviated as

$$
\begin{equation*}
\forall x \in S: A(x) \tag{3}
\end{equation*}
$$

The statement $\forall x \in S: A(x)$ is true provided that $A(c)$ is true for every choice c of x in S.
For a finite S, say

$$
S=\left\{c_{1}, c_{2}, . ., c_{m}\right\}
$$

the statement $\forall x \in S: A(x)$ means the same as

$$
A\left(c_{1}\right) \& A\left(c_{2}\right) \& \cdots \& A\left(c_{m}\right)
$$

(b) "For some $x \in S, A(x)$ is true" is abbreviated as

$$
\begin{equation*}
\exists x \in S: A(x) \tag{4}
\end{equation*}
$$

The statement $\exists x \in S: A(x)$ is true provided that $A(c)$ is true for at least one choice c of x in S. For a finite S, say

$$
S=\left\{c_{1}, c_{2}, . ., c_{m}\right\}
$$

the statement $\exists x \in S: A(x)$ means the same as

$$
A\left(c_{1}\right) \vee A\left(c_{2}\right) \vee \cdots \vee A\left(c_{m}\right)
$$

Thus, the universal and existetial quantifiers are extensions of the connectives \& and \vee, respectively, to deal with infinitely many assertions $A(c)$ about infinitely many values c.

Warning:

(a) " $\forall x \in S: A(x)$ " means that $\forall x((x \in S) \rightarrow A(x))$,
(b) whereas $" \exists x \in S: A(x)$ " means that $\exists x((x \in S) \& A(x))$.

3.1 De Morgan Dual Laws

Proposition 3.1

$$
\begin{align*}
\neg \exists x \in S: A(x) & =\forall x \in S: \neg A(x), \tag{5}\\
\neg \forall x \in T: B(x) & =\exists x \in T: \neg B(x) . \tag{6}
\end{align*}
$$

Definition 3.1 A sequence $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ is a Cauchy sequence iff whatever $\varepsilon>0$ we take, one can find a (non-negative) integer N such that for any positive k :

$$
\left|x_{n+k}-x_{n}\right|<\varepsilon \text { whenever } n>N .
$$

Definition 3.1 incorporates four quantifying phrases: "whatever $\varepsilon>0$ ", "one can find an integer N ", "for any positive k ", and "whenever $n>N$ ". In formal terms, it is abbreviated as:

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \in \mathcal{N} \forall k>0 \forall n \geq N\left(\left|x_{n+k}-x_{n}\right|<\varepsilon\right) . \tag{7}
\end{equation*}
$$

What does it mean that the sequence $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ is not a Cauchy sequence?
Literally, it means that

$$
\begin{equation*}
\neg \forall \varepsilon>0 \exists N \in \mathcal{N} \quad \forall k>0 \quad \forall n \geq N\left(\left|x_{n+k}-x_{n}\right|<\varepsilon\right) \tag{8}
\end{equation*}
$$

Indeed, the duality principle provides us with the following positive version of the negative (8):

$$
\begin{equation*}
\exists \varepsilon>0 \forall N \in \mathcal{N} \exists k>0 \exists n \geq N\left(\left|x_{n+k}-x_{n}\right| \geq \varepsilon\right) . \tag{9}
\end{equation*}
$$

3.2 Renaming Dummy Variables

Proposition 3.2 The quantified variable x in the above statements (3) and (4) is a bound, or "dummy", variable, and can be replaced (renamed) in all its occurrences by any other variable symbol:
(1) A statement of the form

$$
\forall x \in S: A(x)
$$

means the same as

$$
\begin{aligned}
& \forall y \in S: A(y), \\
& \forall \varepsilon \in S: A(\varepsilon) \\
& \forall \varepsilon^{\prime} \in S: A\left(\varepsilon^{\prime}\right)
\end{aligned}
$$

etc.
(2) A statement of the form

$$
\exists x \in S: A(x),
$$

means the same as

$$
\begin{array}{r}
\exists y \in S: A(y), \\
\exists \delta \in S: A(\delta), \\
\exists \delta_{1} \in S: A\left(\delta_{1}\right),
\end{array}
$$

etc.
For instance,

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \in \mathcal{N} \quad \forall n \geq N \quad\left(\left|x_{n}-a\right|<\varepsilon\right) \tag{10}
\end{equation*}
$$

can be rewritten as

$$
\begin{equation*}
\forall \varepsilon^{\prime}>0 \exists M \in \mathcal{N} \quad \forall k \geq M\left(\left|x_{k}-a\right|<\varepsilon^{\prime}\right) \tag{11}
\end{equation*}
$$

3.3 $\forall \exists$ versus $\exists \forall$

Proposition 3.3 The order in which quantifiers appear affects the meaning of the statement.
Proof. Compare:

$$
\forall x \in \mathcal{R} \exists y \in \mathcal{R}((x+y)=0)
$$

and

$$
\exists y \in \mathcal{R} \forall x \in \mathcal{R}((x+y)=0) .
$$

Proposition 3.4 If an existential expression $\exists y \in S$ occurs in a given statement, then the choice of y generally depends on any variable that occurs before our y, but not on variables that occurs after y, (furthermore, in turn, our y affects those "after variables").
(1) In a statement of the form:

$$
\begin{equation*}
\forall x \in S \exists y \in T: A(x, y), \tag{12}
\end{equation*}
$$

the choice of y is allowed to depend on the value of x;
in other words, it means that there is a function f from S to T such that

$$
\begin{equation*}
\forall x \in S: A(x, f(x)) \tag{13}
\end{equation*}
$$

(whatever c from S we take, $A(c, f(c))$ is true);
(2) Whereas in the statement:

$$
\begin{equation*}
\exists y \in T \forall x \in S: A(x, y) \tag{14}
\end{equation*}
$$

the choice of y must be independent of x.
To emphasize that in statement (12) the choice of y depends on x, statement (12) may be rewritten as:

$$
\begin{equation*}
\forall x \in S \exists y_{x} \in T: A\left(x, y_{x}\right) \tag{15}
\end{equation*}
$$

A "standardized" representation of statements within the rigid logical framework allows us to simplify and clarify the problems under consideration.

Definition 3.2 A sequence $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ has a limit a iff whatever $\varepsilon>0$ we take, one can find a positive integer N such that

$$
\left|x_{n}-a\right|<\varepsilon \text { whenever } n>N .
$$

Along the above lines, keeping the information "who affects whom", we may say that
"the sequence $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ has the limit a "
means that:

$$
\begin{equation*}
\forall \varepsilon>0 \exists N_{\varepsilon} \in \mathcal{N} \quad \forall n \geq N_{\varepsilon}\left(\left|x_{n}-a\right|<\varepsilon\right) \tag{16}
\end{equation*}
$$

Similarly, a sequence $y_{1}, y_{2}, \ldots, y_{n}, \ldots$ has a limit b iff

$$
\begin{equation*}
\forall \varepsilon>0 \exists N_{\varepsilon} \in \mathcal{N} \quad \forall n \geq N_{\varepsilon}\left(\left|y_{n}-b\right|<\varepsilon\right) \tag{17}
\end{equation*}
$$

But, it is extremely misleading to use one and the same symbols $\varepsilon, N_{\varepsilon}$ in unrelated situations: there is no connection between N_{ε} in (16) and N_{ε} in (17). Based on Proposition 3.2, we can circumvent such a collision by rewriting (16) as:

$$
\begin{equation*}
\forall \varepsilon^{\prime}>0 \quad \exists N_{\varepsilon^{\prime}} \in \mathcal{N} \quad \forall n \geq N_{\varepsilon^{\prime}}\left(\left|x_{n}-a\right|<\varepsilon^{\prime}\right) \tag{18}
\end{equation*}
$$

and by rewriting (17) as:

$$
\begin{equation*}
\forall \varepsilon^{\prime \prime}>0 \exists M_{\varepsilon^{\prime \prime}} \in \mathcal{N} \forall m \geq M_{\varepsilon^{\prime \prime}}\left(\left|y_{m}-b\right|<\varepsilon^{\prime \prime}\right) \tag{19}
\end{equation*}
$$

It should be pointed out that we meet with the problem of "dummy" variables in all branches of mathematics: for instance,

$$
\begin{gathered}
\sum_{i=1}^{i=n} x_{i}=\sum_{j=1}^{j=n} x_{j}=\sum_{k=1}^{k=n} x_{k}=\ldots \\
\int_{a}^{b} \sin (2 t+1) d t=\int_{a}^{b} \sin (2 \varphi+1) d \varphi=\int_{a}^{b} \sin (2 x+1) d x=\ldots
\end{gathered}
$$

[^0]: *These are not a substitute for taking your own notes, but will be a help if the dog eats your notes.

