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A.A.KIRILLOV

1. Introduction

Our goal is to make sense to the expressions like

eA, sinA,
A√

1 + A2
, or, in general, f(A)

where A is not a number but a linear operator in some vector space V . We
shall see that it can be done only under some restrictions on the function f
and the operator A in question.

2. Functions of a matrix argument

2.1. Polynomial functions. We start with functions of the simplest kind
– polynomial functions. Let P (x) = p0x

n + · · ·+pn−1x+pn be a polynomial
with real or complex coefficients and A = ||ai,j || be a matrix of size N . Then
it is rather clear that the expression P (A) must be understood as the matrix

P (A) = p0 ·An + · · ·+ pn−1 ·A + pn · 1
where 1 denotes the unit matrix of size N .

Remark 1. One can ask, why we should write the last summand in this
form. The most natural answer is that only under this agreement we ensure
the map P 7→ P (A) to be a homomorphism of the polynomial algebra to the
number field, i.e. the following equalities hold:

(P1 + P2)(A) = P1(A) + P2(A), (λ · P )(A) = λ · P (A),

(P1 · P2)(A) = P1(A) · P2(A)

2.2. Rational functions. A rational function is by definition a ratio of two
polynomial functions: R(x) = P (x)

Q(x) . So, we can try to define the quantity

R(A) as R(A) = P (A)
Q(A) . But there is two delicate points. First, Q(A) must

be invertible matrix; second, the matrix multiplication is not commutative,
so we must choose between P (A) ·Q(A)−1 and Q(A)−1 · P (A).

Actually, the second obstacle is inessential, because for a given matrix
A all matrices of the form P (A) pairwise commute. So, P (A) · Q(A) =
Q(A) · P (A), hence, Q(A)−1 · P (A) = P (A) ·Q(A)−1.
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Consider the first point. For a given A we can define R(A) only for those
R = P (x)

Q(x) , for which Q(A) is invertible. Recall that a number λ ∈ C is called
an eigenvalue of a matrix A if det (A− λ · 1) = 0, i.e. when (A− λ · 1) is
not invertible. Collection of all eigenvalues of A is called spectrum of A.
We denote it by Spec A

Proposition 1. The matrix Q(A) is invertible if and only if Q(λ) 6= 0 for
every eigenvalue λ ∈ Spec A.

Indeed, the polynomial Q can be written as a product of linear factors:

(1) Q(x) = c(x− λ1)(x− λ2) · · · (x− λN )

where λ1, λ2, λN are roots of Q (taken with multiplicities). Therefore,

Q(A) = c(A− λ1)(A− λ2) · · · (A− λN ) and

Q(A)−1 = c−1(A− λ1 · 1)−1(A− λ2 · 1)−1 · · · (A− λN · 1)−1.

So, Q(A) is invertible when all matrices (A−λi ·1) are. But this is the case
when no roots of Q belong to Spec A.

2.3. General functions. The statement of proposition 1 suggests that
properties of the matrix f(A) depend on behavior of the function f on
the spectrum of A. It is not completely true, but becomes true if we replace
the set Spec A by its infinitesimal neighborhood. To explain this, we
start with two simple examples.

Example 1. Assume that our matrix A is diagonal, or, more generally,
can be reduced to the diagonal form by the transformation A 7→ SAS−1 with
some invertible matrix S.1 Then for any polynomial function F (hence, for
any admissible rational function F ) we have

(2) F




a1 0 . . . 0
0 a2 . . . 0

. . . . . . . . . . . .
0 0 . . . aN


 =


F (a1) 0 . . . 0

0 F (a2) . . . 0
. . . . . . . . . . . .
0 0 . . . F (aN )


This equality confirms the suggestion above and can be easily extended

to all functions F of a complex variable z.
But the life is not so simple.

Example 2. Suppose that our matrix A can not be reduced to the diagonal
form. The simplest example of such matrix is the so-called Jordan block

1The “raison d’être” of the notion of a matrix is that matrices can be used as an
algebraic counterpart of the geometric notion of a linear operator. But to associate a
matrix to a given operator we have to choose a basis. If we change the basis, the matrix
also changes according to the rule A 7→ SAS−1 where S is the matrix of transition from
one basis to another. Thus, the similar matrices A and SAS−1 are just two “portraits”
of the same operator and their properties are completely parallel.
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JN (λ) of size N with an eigenvalue λ given by

(3) JN (λ) =


λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . λ


The direct computation2 shows that the answer has the following beautiful
form:

(4) F
(
JN (λ)

)
=



F (λ) F ′(λ) 1
2F ′′(λ) . . . 1

(N−1)!F
(N−1)(λ)

0 F (λ) F ′(λ) . . . 1
(N−2)!F

(N−2)(λ)
0 0 F (λ) . . . 1

(N−3)!F
(N−3)(λ)

. . . . . . . . . . . . . . .
0 0 0 . . . F ′(λ)
0 0 0 . . . F (λ)


We see, that the result depends not only on the values of F on the spec-

trum of A but also on the values of the first N − 1 derivatives of F at the
points of Spec A. This is the exact meaning of the expression: “F (A) de-
pends on the values of F on UN−1(Spec A) – the infinitesimal neighborhood
of Spec A of order N − 1”.

Introduce the notation

(5) F1
N∼ F2 on the set X

which means that the difference F1 − F2 vanishes at all points x ∈ X with
multiplicity ≥ N . We can also express this fact, saying that F1 and F2

coincide on UN (X).
Note, that for a polynomial F the matrix F

(
JN (λ)

)
can be non-zero even

when λ is a root of F . To have a zero value at JN (λ), F must have λ as
a root of multiplicity at least N . In this case we say that F vanishes on the
infinitesimal neighborhood UN−1(λ).

Now we can discuss the case of a general matrix A. It is known that any
matrix is similar to the direct sum of Jordan blocks of arbitrary sizes and
eigenvalues. In other words, A is similar to a block-diagonal matrices with
K blocks of the form

(6) JNk
(λk), k = 1, 2, . . . , K, where

K∑
k=1

Nk = N.

2There are several ways to make this computation in a “smart” way, practically with no
computations at all. But it is very instructive to make it directly at least for a momomial
F (x) = xn.
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Then for any polynomial function P the value P (A) is similar to the direct
sum of K blocks of the form

(7) P (JNk
(λk)) , k = 1, 2, . . . , K.

These matrices depend only on the values of P on the infinitesimal neigh-
borhood of SpecA of order Ñ − 1, where

(8) Ñ := max
1≤k≤K

Nk.

Exercise 1. Show that for any finite set X ⊂ R, any N ∈ N and any smooth
function F on R there exist a polynomial P such that P

N∼ F on X.

Let now F be any smooth function on R. Choose a polynomial function P

satisfying P
eN−1∼ F on Spec A. Then the value P (A) is determined uniquely

and does not depend on the choice of P .
So, we put by definition

(9) F (A) := P (A) for any polynomial P satisfying P
eN−1∼ F on Spec A;

Exercise 2. Let A =
(

0 a
−a 0

)
. Compute the following matrices

a) sin A; b) |A|; c) eA; d) log A where

log(reiθ) := log r + iθ for r > 0 and −π < θ < π;

e) log A where

log(reiθ) := log r + iθ for r > 0 and 0 < θ < 2π.
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