LECTURE 1
 FUNCTIONS OF AN OPERATOR ARGUMENT

A.A.KIRILLOV

1. Introduction

Our goal is to make sense to the expressions like

$$
e^{A}, \quad \sin A, \quad \frac{A}{\sqrt{1+A^{2}}}, \quad \text { or, in general, } f(A)
$$

where A is not a number but a linear operator in some vector space V. We shall see that it can be done only under some restrictions on the function f and the operator A in question.

2. Functions of a matrix argument

2.1. Polynomial functions. We start with functions of the simplest kind - polynomial functions. Let $P(x)=p_{0} x^{n}+\cdots+p_{n-1} x+p_{n}$ be a polynomial with real or complex coefficients and $A=\left\|a_{i, j}\right\|$ be a matrix of size N. Then it is rather clear that the expression $P(A)$ must be understood as the matrix

$$
P(A)=p_{0} \cdot A^{n}+\cdots+p_{n-1} \cdot A+p_{n} \cdot \mathbf{1}
$$

where 1 denotes the unit matrix of size N.
Remark 1. One can ask, why we should write the last summand in this form. The most natural answer is that only under this agreement we ensure the map $P \mapsto P(A)$ to be a homomorphism of the polynomial algebra to the number field, i.e. the following equalities hold:

$$
\begin{gathered}
\left(P_{1}+P_{2}\right)(A)=P_{1}(A)+P_{2}(A), \quad(\lambda \cdot P)(A)=\lambda \cdot P(A), \\
\left(P_{1} \cdot P_{2}\right)(A)=P_{1}(A) \cdot P_{2}(A)
\end{gathered}
$$

2.2. Rational functions. A rational function is by definition a ratio of two polynomial functions: $R(x)=\frac{P(x)}{Q(x)}$. So, we can try to define the quantity $R(A)$ as $R(A)=\frac{P(A)}{Q(A)}$. But there is two delicate points. First, $Q(A)$ must be invertible matrix; second, the matrix multiplication is not commutative, so we must choose between $P(A) \cdot Q(A)^{-1}$ and $Q(A)^{-1} \cdot P(A)$.

Actually, the second obstacle is inessential, because for a given matrix A all matrices of the form $P(A)$ pairwise commute. So, $P(A) \cdot Q(A)=$ $Q(A) \cdot P(A)$, hence, $Q(A)^{-1} \cdot P(A)=P(A) \cdot Q(A)^{-1}$.

[^0]Consider the first point. For a given A we can define $R(A)$ only for those $R=\frac{P(x)}{Q(x)}$, for which $Q(A)$ is invertible. Recall that a number $\lambda \in \mathbb{C}$ is called an eigenvalue of a matrix A if $\operatorname{det}(A-\lambda \cdot \mathbf{1})=0$, i.e. when $(A-\lambda \cdot \mathbf{1})$ is not invertible. Collection of all eigenvalues of A is called spectrum of A. We denote it by $\operatorname{Spec} A$

Proposition 1. The matrix $Q(A)$ is invertible if and only if $Q(\lambda) \neq 0$ for every eigenvalue $\lambda \in \operatorname{Spec} A$.

Indeed, the polynomial Q can be written as a product of linear factors:

$$
\begin{equation*}
Q(x)=c\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{N}\right) \tag{1}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{N}$ are roots of Q (taken with multiplicities). Therefore,

$$
\begin{gathered}
Q(A)=c\left(A-\lambda_{1}\right)\left(A-\lambda_{2}\right) \cdots\left(A-\lambda_{N}\right) \text { and } \\
Q(A)^{-1}=c^{-1}\left(A-\lambda_{1} \cdot \mathbf{1}\right)^{-1}\left(A-\lambda_{2} \cdot \mathbf{1}\right)^{-1} \cdots\left(A-\lambda_{N} \cdot \mathbf{1}\right)^{-1} .
\end{gathered}
$$

So, $Q(A)$ is invertible when all matrices $\left(A-\lambda_{i} \cdot \mathbf{1}\right)$ are. But this is the case when no roots of Q belong to $\operatorname{Spec} A$.
2.3. General functions. The statement of proposition 1 suggests that properties of the matrix $f(A)$ depend on behavior of the function f on the spectrum of A. It is not completely true, but becomes true if we replace the set $\operatorname{Spec} A$ by its infinitesimal neighborhood. To explain this, we start with two simple examples.

Example 1. Assume that our matrix A is diagonal, or, more generally, can be reduced to the diagonal form by the transformation $A \mapsto S A S^{-1}$ with some invertible matrix $S .{ }^{1}$ Then for any polynomial function F (hence, for any admissible rational function F) we have

$$
F\left(\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \tag{2}\\
0 & a_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & a_{N}
\end{array}\right)\right)=\left(\begin{array}{cccc}
F\left(a_{1}\right) & 0 & \ldots & 0 \\
0 & F\left(a_{2}\right) & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & F\left(a_{N}\right)
\end{array}\right)
$$

This equality confirms the suggestion above and can be easily extended to all functions F of a complex variable z.

But the life is not so simple.
Example 2. Suppose that our matrix A can not be reduced to the diagonal form. The simplest example of such matrix is the so-called Jordan block

[^1]$J_{N}(\lambda)$ of size N with an eigenvalue λ given by
\[

J_{N}(\lambda)=\left($$
\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \tag{3}\\
0 & \lambda & 1 & \ldots & 0 \\
0 & 0 & \lambda & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & \lambda
\end{array}
$$\right)
\]

The direct computation ${ }^{2}$ shows that the answer has the following beautiful form:

$$
F\left(J_{N}(\lambda)\right)=\left(\begin{array}{ccccc}
F(\lambda) & F^{\prime}(\lambda) & \frac{1}{2} F^{\prime \prime}(\lambda) & \ldots & \frac{1}{(N-1)!} F^{(N-1)}(\lambda) \tag{4}\\
0 & F(\lambda) & F^{\prime}(\lambda) & \ldots & \frac{1}{(N-2)!} F^{(N-2)}(\lambda) \\
0 & 0 & F(\lambda) & \ldots & \frac{1}{(N-3)!!} F^{(N-3)}(\lambda) \\
\ldots & \ldots & \ldots & \cdots & \cdots \\
0 & 0 & 0 & \ldots & F^{\prime}(\lambda) \\
0 & 0 & 0 & \cdots & F(\lambda)
\end{array}\right)
$$

We see, that the result depends not only on the values of F on the spectrum of A but also on the values of the first $N-1$ derivatives of F at the points of $\operatorname{Spec} A$. This is the exact meaning of the expression: " $F(A)$ depends on the values of F on $U_{N-1}(\operatorname{Spec} A)$ - the infinitesimal neighborhood of $\operatorname{Spec} A$ of order $N-1$ ".

Introduce the notation

$$
\begin{equation*}
F_{1} \stackrel{N}{\sim} F_{2} \text { on the set } \mathrm{X} \tag{5}
\end{equation*}
$$

which means that the difference $F_{1}-F_{2}$ vanishes at all points $x \in X$ with multiplicity $\geq N$. We can also express this fact, saying that F_{1} and F_{2} coincide on $U_{N}(X)$.

Note, that for a polynomial F the matrix $F\left(J_{N}(\lambda)\right)$ can be non-zero even when λ is a root of F. To have a zero value at $J_{N}(\lambda), \quad F$ must have λ as a root of multiplicity at least N. In this case we say that F vanishes on the infinitesimal neighborhood $U_{N-1}(\lambda)$.

Now we can discuss the case of a general matrix A. It is known that any matrix is similar to the direct sum of Jordan blocks of arbitrary sizes and eigenvalues. In other words, A is similar to a block-diagonal matrices with K blocks of the form

$$
\begin{equation*}
J_{N_{k}}\left(\lambda_{k}\right), \quad k=1,2, \ldots, K, \quad \text { where } \quad \sum_{k=1}^{K} N_{k}=N \tag{6}
\end{equation*}
$$

[^2]Then for any polynomial function P the value $P(A)$ is similar to the direct sum of K blocks of the form

$$
\begin{equation*}
P\left(J_{N_{k}}\left(\lambda_{k}\right)\right), \quad k=1,2, \ldots, K \tag{7}
\end{equation*}
$$

These matrices depend only on the values of P on the infinitesimal neighborhood of $\operatorname{Spec} A$ of order $\widetilde{N}-1$, where

$$
\begin{equation*}
\tilde{N}:=\max _{1 \leq k \leq K} N_{k} \tag{8}
\end{equation*}
$$

Exercise 1. Show that for any finite set $X \subset \mathbb{R}$, any $N \in \mathbb{N}$ and any smooth function F on \mathbb{R} there exist a polynomial P such that $P \stackrel{N}{\sim} F$ on X.

Let now F be any smooth function on \mathbb{R}. Choose a polynomial function P satisfying $P \stackrel{\widetilde{N}}{\sim} \sim^{1} F$ on $\operatorname{Spec} A$. Then the value $P(A)$ is determined uniquely and does not depend on the choice of P.

So, we put by definition
(9) $\quad F(A):=P(A)$ for any polynomial P satisfying $P{ }_{\sim}^{\sim}-1 ~ F$ on $\operatorname{Spec} A$;

Exercise 2. Let $A=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right)$. Compute the following matrices
a) $\sin A$; b) $|A|$; c) e^{A}; d) $\log A$ where

$$
\log \left(r e^{i \theta}\right):=\log r+i \theta \quad \text { for } r>0 \text { and }-\pi<\theta<\pi
$$

e) $\log A$ where

$$
\log \left(r e^{i \theta}\right):=\log r+i \theta \quad \text { for } r>0 \text { and } 0<\theta<2 \pi
$$

Department of Mathematics, The University of Pennsylvania, Philadelphia, PA 19104-6395, USA E-mail addresses: kirillov@math.upenn.edu

[^0]: Date: Sept 2007.

[^1]: ${ }^{1}$ The "raison d'être" of the notion of a matrix is that matrices can be used as an algebraic counterpart of the geometric notion of a linear operator. But to associate a matrix to a given operator we have to choose a basis. If we change the basis, the matrix also changes according to the rule $A \mapsto S A S^{-1}$ where S is the matrix of transition from one basis to another. Thus, the similar matrices A and $S A S^{-1}$ are just two "portraits" of the same operator and their properties are completely parallel.

[^2]: ${ }^{2}$ There are several ways to make this computation in a "smart" way, practically with no computations at all. But it is very instructive to make it directly at least for a momomial $F(x)=x^{n}$.

