Pythagorean Theorem: Using Similar Triangles

Let T be a right triangle whose sides have length a, b, and c (c is the hypotenuse). The Pythagorean Theorem says that

$$a^2 + b^2 = c^2.$$

This is Euclid’s proof using similar triangles. It also uses that for right triangles it is more informative to specify the sides than the vertices.

Let the right triangle T' with sides a', b', c' be similar to T. We then know the corresponding sides of T and T' are proportional, that is, there is a scaling factor $t > 0$ so that

$$a' = ta, \quad b' = tb, \quad c' = tc.$$

First step: Compare Area(T) and Area(T'). Because T and T' are right triangles,

$$\text{Area}(T') = \frac{1}{2}a'b' = \frac{1}{2}(ta)(tb) = t^2 \text{Area}(T).$$

In our situation (below) we will know the hypotenuses c and c' so $t = \frac{c'}{c}$ and

$$\text{Area}(T') = \left[\frac{\text{hypotenuse}(T')}{\text{hypotenuse}(T)}\right]^2 \text{Area}(T).$$

Now Euclid’s key idea: Introduce the altitude to the hypotenuse of T. This partitions T into two triangles, T_1 and T_2. Both of them are similar to T since their corresponding angles are equal. By comparing the length of the hypotenuse of T, T_1 and T_2 we find the scaling factors:

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypotenuse</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Use equation (2) to find $\text{Area}(T_1) = (a/c)^2 \text{Area}(T)$ and $\text{Area}(T_2) = (b/c)^2 \text{Area}(T)$. But $\text{Area}(T) = \text{Area}(T_1) + \text{Area}(T_2)$ so

$$\text{Area}(T) = [(a/c)^2 + (b/c)^2] \text{Area}(T).$$

Dividing by Area(T) gives exactly the Pythagorean equation (1).

It may be useful to compare this with other recent presentations. They involve more formulas – and motivated this version.

WIKIPEDIA:
(search for "Proof using similar triangles")

Khan Academy:
https://www.khanacademy.org/math/geometry/hs-geo-trig/hs-geo-pythagorean-proofs/v/pythagorean-