Pythagorean Theorem: Using Similar Triangles

Let T be a right triangle whose sides have length a, b, and c (c is the hypotenuse). The Pythagorean Theorem says that

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1}
\end{equation*}
$$

This is Euclid's proof using similar triangles. I wrote it because I was unhappy with what I found on the Internet.

The right triangle T^{\prime} with sides $a^{\prime}, b^{\prime}, c^{\prime}$ is similar to T because the corresponding angles are equal. We then know the corresponding sides of T and T^{\prime} are proportional, that is, there is a scaling factor $t>0$ so that

$$
a^{\prime}=t a, \quad b^{\prime}=t b, \quad c^{\prime}=t c .
$$

First step: Compare $\operatorname{Area}(T)$ and $\operatorname{Area}\left(T^{\prime}\right)$. Because T and T^{\prime} are right triangles,

$$
\operatorname{Area}\left(T^{\prime}\right)=\frac{1}{2} a^{\prime} b^{\prime}=\frac{1}{2}(t a)(t b)=t^{2} \operatorname{Area}(T)
$$

In our situation (below) we will know the hypotenuses c and c^{\prime} so $t=\frac{c^{\prime}}{c}$ and

$$
\begin{equation*}
\operatorname{Area}\left(T^{\prime}\right)=\left[\frac{\operatorname{hypotenuse}\left(T^{\prime}\right)}{\operatorname{hypotenuse}(T)}\right]^{2} \operatorname{Area}(T) \tag{2}
\end{equation*}
$$

Now the key idea (Euclid!): Introduce the altitude to the hypotenuse of T. This partitions T into two triangles, T_{1} and T_{2}. Both of them are similar to T since their corresponding angles are equal. By comparing the length of the hypotenuse of T, T_{1}

c and T_{2} we find the scaling factors:

	T	T_{1}	T_{2}
hypotenuse	c	a	b

Use equation (2) to find $\operatorname{Area}\left(T_{1}\right)=(a / c)^{2} \operatorname{Area}(T)$ and $\operatorname{Area}\left(T_{2}\right)=(b / c)^{2} \operatorname{Area}(T)$. But $\operatorname{Area}(T)=\operatorname{Area}\left(T_{1}\right)+\operatorname{Area}\left(T_{2}\right)$ so

$$
\operatorname{Area}(T)=\left[(a / c)^{2}+(b / c)^{2}\right] \operatorname{Area}(T) .
$$

Dividing by $\operatorname{Area}(T)$ gives exactly the Pythagorean equation (11).
It may be useful to compare this with other recent presentations. They involve more formulas - and motuvated me to write this version.
Wikipedia:
https://en.wikipedia.org/w/index.php?title=Pythagorean_theorem
(search for "Proof using similar triangles")
Khan Academy:
https://www.khanacademy.org/math/geometry/hs-geo-trig/hs-geo-pythagorean-proofs/v/pythagorean-

