Mathematics 246 Examination

- Next to each item in the first list place as many items from the second list as are appropriate in general.
 - 1. $(z^2 + 1) / z$
 - 2. Pe(z,1,2i) (The Weierstrass Pe function with primiting periods 1, 2i).
 - 3. $e^{\text{Pe}(z,1,21)}$
 - 4. cot z
 - 5. sin z
 - A. meromorphic
 - B. rational
 - C. elliptic
 - D. doubly periodic
 - E. has an essential singularity at a finite point
 - F. has an essential singularity at ...
 - G. has a simple pole at the origin
 - H. has a double pole at the origin
 - can be expressed as a convergent product of bounded functions with simple zeros.
 - J. can be expressed as a convergent sum of rational fund
 - K. bounded in 1 < |z| < 2.
- II. Find, where possible, (if impossible, indicate why) the single-valued analytic functions that map.
 - a) The annulus $1 \le |z| \le 2$ onto the annulus $2 \le |z| \le 4$ so that the circle |z| = 2 goes into itself.
 - b) The strip $1 \le x \le 2$ onto the strip $1 \le x \le 3$.
 - c) The annulus $5 \le |z| \le 10$ onto the annulus $1 \le |z| \le 5$.

(II. continued)

- d) A domain D with the two finite boundary points a,b into a half plane.
- III. Prove one of the following:
 - a) The Schwarz reflection principle for analytic continuation across a line.
 - b) Given that $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$, Re z > 0 show that $\Gamma(z)$ can be continued analytically into the domain Re z > -1 and that $\Gamma(z) = \lim_{n \to \infty} \int_0^n (1 \frac{t}{n})^n t^{z-1} dt$ for n an integer, Re z > 0.
- IV. Let R be a rectangle ABCD with sides a, b, and R' a rectangle A'B'C'D' with sides a, b' where b \neq b'. Prove that R cannot be mapped conformally into R' so that A \longrightarrow A', B \longrightarrow B', C \longrightarrow C' and D \longrightarrow D'.

Can R be mapped onto R' so that $A \longrightarrow A'$, $B \longrightarrow B'$,

C -> C' and the mapping is conformal.

Established theorems may be used without proof.

MATHEMATICS 245A Section A

Test No. 1

Questions may be answered in any order.

- 1) Let the power series $\sum_{n=0}^{\infty} a_n z^n$, $\sum_{n=0}^{\infty} b_n z^n$, $\sum_{n=0}^{\infty} a_n b_n z^n$ have radii of convergence r, r' and R, respectively. (a) Show that $R \ge rr'$. (b) Give an example with R > rr'.
- 2) Prove that $(1 + z/n)^n \rightarrow e^2$ normally for $n \rightarrow \infty$ (n an integer). (Note that e^2 is defined by the power series).
- 3) Let f(z) be entire. Prove that

$$\frac{f(z+2h)-2f(z+h)+f(z)}{h^2} \longrightarrow f''(z)$$

normally as $0 \neq h \longrightarrow 0$. (Hint: use Cauchy's integral formula).

- 4) Given that $\frac{e^z}{(z-1)(z+2)} = \sum_{-\infty}^{+\infty} a_n z^n$ in a domain D, what are the possible values of a 2?
- 5) Let f(z) be holomorphic for $0<|z|<\infty$. What can you say about f(z) if you are told that
 - (a) Im f(z) > 0?
 - (b) $|z^3| f(z)| < 5$?
 - (c) $f(\frac{1}{n}) = 1 + (-1)^n$, n = 1, 2, 3, ...?
 - (d) $|f(z)| \le e^{|z|}$ and $f(n) = 1 + (-1)^n$, n = 1, 2, ...?
 - (e) $|f(z)| \le |z|^{-1000}$ and $f(\frac{1}{n}) = 0$, n = 1, 2, ...?
 - (f) f''(z) + f(z) = 0 for real rational values of $z \neq 0$?
 - (g) $|f(z)| \le |f(2)|$ for $|z-2| < \frac{1}{10}$?
 - (h) f(z) has no zeros and $|f(z)| \ge |f(2)|$ for $|z-2| < \frac{1}{10}$
 - (1) $\int_{|z|=10}^{1} f(z)z^n dz = 0 \text{ for } n = -1, -2, \dots$?
- (j) |f(z) f(2)| > 1 for |z 2| > 1? Give reasons for your answers.

EXAMINATION I

Math. 410 Dr. Kazdan Thurs., Feb. 12, 1970 10-11 A.M.

Directions: Closed book. Answer Part A and any 3 from Fart B (if all 4 questions in Part B are done, the best 3 will be selected). Each question is 25 points. Extra credit for more.

PART A

TRUE - FALSE. ANSWER ANY 12 . Score = 2#correct - # wrong.
If some question appears ambiguous, you should feel free
to give a reason for your answer.

1.
$$(\frac{1}{1-21}) = \frac{1-21}{5}$$

- 2. If a ≠ 0, b, and c are complex numbers that
 satisfy ab = ac, then b = c.
- 3. Let A be the set in D where $|z-1| \le |z+3|$. Then A = B.
- 4. The function $f(z) = 2xy + i(x^2 y^2)$ is analytic for all complex numbers z = x + iy.
- 5. The function $f(z) = e^{\pi}$ is analytic for every $z \in C$.
- 6. There is an analytic function f = u + iv with $u(x,y) = x^2 2y^2$.
- 7. If $\sum a_1(z-1)^n$ converges for z=2+1, then it must converge for z=0.
- 8. If $\sum a_n z^n$ converges for |z| < 1, then $\sum na_n z^{n-1}$ also converges for |z| < 1.
- 9. If t is any real number, then | it | = 1.
- 10. $e^{i\pi/2} = i$.
- 11. $|e^{iz}| \le 1$ if and only if Im $\{z\} > 0$.
- 12. |sin z| & 1 for all z & C.
- 13. If cos z = 0, then z must be real.
- 14. If $e^{z} = e^{w}$, where z, $w \in C$, then we must have z = w.

43

PART B

1. Find the set in the complex plane where the following series converge (please do not worry about convergence on the boundary of these sets).

a)
$$\sum_{n=0}^{\infty} \frac{n(z+1)^{2n}}{z^n}$$
 b) $\sum_{n=0}^{\infty} \frac{(2z)^n}{n!}$ c) $\sum_{n=0}^{\infty} e^{nz}$

b)
$$\sum_{n=1}^{\infty} \frac{(2z)^n}{n!}$$

c)
$$\sum_{n=0}^{\infty} e^{nz}$$

2. Let $v(x,y) = 3 - 2x + y - e^y \sin x$. Find an analytic function f = u + iv whose <u>imaginary</u> part is v and with f(0,0) = 1 + 31.

3. Let $f_n(z) = \frac{1}{z^n + 1}$. Prove that f_n converges uniformly

to f(z) = 0 for $|z| \ge 2$. (Remark: $|a + b| \ge |a| - |b|$).

4. If $\sum a_n z^n$ converges in the disc |z| < r for some r > 0, prove that

$$\sum \frac{a_n}{n!} z^n$$

converges for all z & C.

EXAMINATION II

Math. 410 Dr. Kazdan Thurs., March 26, 1970 10-11 A.M.

Directions: Closed book. Answer Part A and any 3 from Part B (if all 4 questions in Part B are done, the best 3 will be selected). Each question is 25 points. Extra credit for more.

PART A

True - False. Answer any 8. Score = 3#correct - 2#wrong. If some question appears ambiguous, you should feel free to give a reason for your answer.

- 1. If f is analytic in the open set ACC, then its complex derivative, f', is also analytic in A.
- 2. There is no polynomial p(z) (except p(z) = constant) such that $|p(z)| \le 10,000$ for all z with Re $\{z\} > 5$.

3.
$$\int \frac{e^{z}}{z-3} dz = 0$$
.

4.
$$\int \sin(e^z) dz = 0$$
. $|z-1| = 3$

- 5. If f is an entire function such that $|f(z)| \le 10^{10}$ for $|z| \ge 10,000,547$, then f = constant.
- 6. If f is enalytic in {|z| \(\frac{1}{2}\)} and $f(z_k) = \sin z_k$, where $z_k = -1$, k = 1, 2, ..., then $f(z) \equiv \sin z$.

For, 7-9, let $\sum_{n=0}^{\infty} a_n z^n$ be the Taylor series expansion of the function

- 7. the series converges when z = 1,
- 8. the series converges absolutely when z = 1,
- 9. the series diverges when z = 4.

PART B

1. Evaluate the contour integral

$$\frac{1}{2\pi i} \int_{X} \frac{2e^{z}}{z(z-2)} dz,$$

where Y is the contour a). |z| = 1, counterclockwise, b). |z-1| = 5, counterclockwise.

- 2. Let a function f have the properties
 - a). f is analytic in $\{|z| \le 1\}$, b). $|f(z)| \le 1$ for |z| = 1, c). f(1/3) = 0.

Prove that $|f(\frac{1}{2})| \leq 1/5$.

3. Let h(t) be continuous for $0 \le t \le 1$ and define F by

$$F(z) = \int_0^1 h(t) \cos(tz) dt,$$

where z is a complex number. Prove that

- a). F is an entire analytic function,
- b). $|F(x+iy)| \le M \cosh y$, where M is a bound on h, i.e., $|h(t)| \le M$ for $0 \le t \le 1$ (recall cosh s $=\frac{1}{2}(e^S+e^{-S})$).
- 4. Let f be analytic in the disc $\{|z| \le r\}$ and $f(z) \ne 0$ for |z| = r. If f has a zero of order n at the point z_0 , $|z_0| \le r$ (so $f(z) = (z-z_0)^n h(z)$, where h(z) is analytic in $\{|z| \le r\}$ and $h(z_0) \ne 0$) but $f(z) \ne 0$ for all $z \ne z_0$, prove that

$$\frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz = n.$$

EXAMINATION III

Math. 410 Dr. Kazdan Thurs. April 23, 1970 10-11 A.M.

Directions: Closed book. One 3 × 5 card with notes may be used.

PART A

Short answer. Answer any 10 (out of 13). 5 points each. Just write the answer in your blue book. Justification is not required.

- 1. The function $f(z) = \frac{1}{(z-1)(z-3)}$ has _____ different Laurent expansions about z=1 (each expansion converging in a different region).
- 2. Exhibit a polynomial p(z) such that

$$f(z) = \frac{p(z)}{1 - \cos z}$$

has a simple pole at z = 0.

- 3. The residue of f(z) of f1 at z=3 is _____.
- 4. Let f be as in \$1. Then the change in the argument of f as z traverses the circle |z| = 2 once counterclockwise is $\frac{\pi}{2}$.

For 5 - 9, match the function on the left with the description of its behavior from the list on the right.

- 5. $\csc^2 z$ at z = 0
- A. simple pole
- 6. tan z at $z = \pi/2$
- B. pole of higher order
- 7. 2z cot z at z = 0
- C. regular analytic

8. $e^{\sin z}$ at z = i

D. removable singularity

9. $\cos \frac{1}{z}$ at z = 0

E. essential singularity

For 10 - 13, let f be analytic for $\{0 < |z| < \infty\}$. Using the list A - D above on the right, describe the behavior of f at z = 0 if you are told that

- 10. $|z^3f(z)| \le 5$ for all $(|z| \le 7)$
- 11. $\int_{|z|=13} f(z)z^n dz = 0, n = -1, -2, \dots$
- 12. f(i) = 1 and $f(\frac{1}{n}) = 0$, n = 1, 2, ...
- 13. $|f(z)| \le |\sin z|$ if $(|z| \le 1)$

PART B

Answer any 2 (out of 3). 25 points each.

1. Evaluate

$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x^4} \, dx \, ,$$

2. The function

has several Laurent series in annuli centered about z=2. Describe all these annuli and find the coefficient of $(z-2)^{-2}$ for each of these Laurent series.

3. Let $\varphi(z)$ be analytic in $D = \{|z| \le 1\}$ and assume that $|\varphi(z)| \le 2$ on $\{|z| = 1\}$. How many roots does the function

$$h(z) = \varphi(z) + 5z^3 - 2$$

have in the disc D? Justify your assertion.