Homework

Due Dec. 13, 1965

MATHEMATICS 213a FINAL EXAMINATION PROFESSOR AHLFORS

JANUARY 28, 1966 2:15 P.M. JEFFERSON 250

1. Compute

$$\int_{|z|=1}^{\frac{e^{z}}{z}} dz, \qquad \int_{|z|=1}^{\frac{e^{z}}{z}} dz, \qquad \int_{|z|=2}^{\frac{dz}{z^{2}+1}}$$

where the circles are in the positive sense.

2. Compute

$$\int_{|z|=p} \frac{|dz|}{|z-a|^2}$$

where a is a constant, $|a| \neq \rho$. (Hint: use the equations $z = \rho^2$ and $|dz| = -i\rho dz/z$ on the circle).

3. Find the possible values of

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{dz}{(z-a)(z-b)}$$

for different positions of a and b.

In what cases can the answer be read off directly from Cauchy's integral theorem or integral formula, and in what case should one use partial fractions?

4. Find
$$\int_{|z|=2}^{\infty} z^n (1-z)^{n} dz$$
 for

various integral values of n and m (positive or negative),

- 5. Prove that a function which is analytic in the whole plane and satisfies an inequality $|f(z)| < |z|^n$ for some n and all sufficiently large |z| must reduce to a polynomial.
- 6. If f(z) is analytic for |z| < 1, and if it is known that $|f(z)| \le (1 |z|)^{-1}$, find the best upper bound for $|f^{(n)}(0)|$ that Cauchy's estimate will yield.

ANSWER ALL QUESTIONS

- 1. Find all solutions of the equation sin z = i.
- 2. In the series $\sum_{0}^{\infty} a_n z^n$ has radius of convergence R_1 , and

if
$$\sum_{0}^{\infty} b_n z^n$$
 has radius of convergence R_2 , prove that

the radius of convergence of $\sum_{0}^{\infty} a_{n} b_{n} z^{n}$ is at least $R_{1} R_{2}$.

Show by example that there is no upper bound.

- Suppose that the linear transformation w = S(z) maps the unit circle |z| = 1 onto the real axis. If S(0) = i, on what circle must S(1/2) lie? Prove further that all points on this circle are possible values of S(1/2).
- 4. Let D be the circular segment defined by x > 1/2, |z| < 1.

 Find explicitly the conformal mapping w = f(z) which maps D on the unit disk in such a way that f(1/2) = -1 and

$$f\left(\frac{1+i\sqrt{3}}{2}\right) = + i.$$

5. Prove Cauchy's theorem for a rectangle (Goursat's proof).

(over

$$\int\limits_{C} \frac{z^2 dz}{(2z+a)(z-a)}$$

for different values of 'a.

- 7. Let D_r be the part of the annulus r < |z| < 1 situated in the first quadrant.
 - \sim a) Define z^i as a single-valued function in D_x .
 - b) Find the smallest r such that the mapping $w = z^i$ is one to one in $D_{\underline{u}}$.
 - c) For this value of r, describe the image region. Is it simply connected?
- 8. Use the calculus of residues to compute

a)
$$\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$$
 (a, b > 0)

b)
$$\int_{0}^{\infty} \frac{\cos xt}{x^2 + a^2} dx$$
 (a and t real)

Math, 213b Homework

Due Feb. 21, 1966

- . Find all the residues of cot 2.
- 2. Recall that f(z) is regular or has a pole at ∞ if $f_1(z) = f(1/z)$ is regular or has a pole at C. When this is so, show that one can write $f(z) = B_m z^m + \cdots + B_1 z + B_0 + \frac{B-1}{z} + g(z)$ where g(z) has at least a double zero at ∞ .
- la the preceding situation, define the residue of f'z) at
 oo as -B₋₁. With this definition, if f(z) is analytic except for poles outside a closed curve C, prove that

$$\frac{1}{2\pi i} \int_{C} f(z)dz = -\sum_{z} Res f$$

where the sum is over all residues outside of C, including the one at ∞ (C is counterclockwise).

Corollary: The sum of all residues of a rational function is zero.

4. Use the preceding exercise to find at a glance the values of

$$\int_{C} \frac{z^{2}dz}{2z^{4}+1}, \quad C \text{ is } |z| = 1$$

$$\int_{C} \frac{z^{3} dz}{2z^{4} + 1} , C is |z| = 1$$

$$\int_{C} \frac{dz}{(z-3)(z^{5}-1)}, \quad C \text{ is } |z| = 2.$$

5. Given that $\int_{0}^{\infty} e^{-t^{2}} dt = \sqrt{\pi}$ (Math. 105b) fird $\int_{0}^{\infty} \int_{0}^{\infty} \cos x \ dx \text{ and } \int_{0}^{\infty} \sin x^{2} dx.$ (Integrate along the boundary of a sector)

Homework page 2

6. Evaluate the Cauchy principal value of

$$\int_{0}^{\infty} \frac{x^{p-1}dx}{1-x} \qquad (0$$

7. If e < 1, prove that for sufficiently large n the polynomial $P_n(z) = 1 + 2z + 5z^1 + \cdots + nz^{n-1}$

has no zeros in $|z| < \rho$.

Math, 213b

Homework

Due Feb. 28, 1966

1. Use residues to compute

$$\iint_{|z| < 1} \frac{dx dy}{|z - a|}$$

where |a| > 1.

2. If f(z) is analytic for $|z| \le 1$, find the value of $\frac{1}{2\pi} \int_0^z \frac{e^{iQ}}{f(e^{iQ})} \frac{e^{iQ} + z}{e^{iQ} - z} dQ$

3. Use the preceding result for another proof of Schwarz' formula

$$f(z) = \frac{1}{2\pi} \int_{0}^{2\pi} u(e^{i\theta}) \frac{e^{i\theta} + z}{e^{i\theta} - z} d\theta$$
 (f = u + i)

 If U(t) is piecewise continuous and bounded for all real t, show that

$$P_{U}(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^{2}+y^{2}} U(t) dt$$

represents a harmonic function in the upper half plane with boundary Values U(t) (at points of continuity).

5. A special case of the preceding formula is

$$\omega(z) = \int_{a}^{b} \frac{y}{(x-t)^2 + y^2} dt.$$

Show that $\omega(z)$ represents the angle under which the segment (a, b) is seen from z. Discuss the behavior of $\omega(z)$ as $z \longrightarrow a$ or b.

6. Find the geometric meaning of $\omega(z) = \int_{0}^{z} = \frac{1 - |z|^{2}}{|e^{i\theta} - z|^{2}} d\theta.$

What are the level curves $\omega(z) = \text{const.}$

Mathematics 246

Name

Functions of a Complex Variable Final Exam (Friday Section) May 20, 1960, 6:00 P.M. to 8:00 P.M.

Please write on these sheets.

- I. Definitions. Complete the following:
 - a. The function f(z) has a pole of order p at the (finite) point $z = z_0$ if
 - b. The function f(z) has a zero of order p at $z = z_0$ if
 - c. The <u>principle part</u> of f(z) at a pole at $z = z_0$ is
 - d. The <u>residue</u> of f(z) at a pole at $z = z_0$ is
 - e. If $f_1(z)$ and $f_2(z)$ are holomorphic in domains D_1 and D_2 , respectively, $f_2(z)$ is a <u>direct analytic</u>

 $\underline{\text{continuation}}$ of $f_1(z)$ if

- f. If $f_1(z)$ and $f_2(z)$ are holomorphic in domain D_1 and D_2 , respectively, $f_2(z)$ is an <u>analytic continuation</u> of $f_1(z)$ if
- g. A simple closed curve is a natural boundary of f(z) if
- h. A mapping $z \rightarrow w = f(z)$ is one-to-one in a domain D of the z-plane if
- 1. A smooth mapping $z \rightarrow w = f(z)$ is conformal at $z = z_0$ if
- j. A function is meromorphic in a domain D if

k. A function is meromorphic in the extended complex plane if

II. General Theory.

a. If f(z) and g(z) are holomorphic in a domain D and f(z) = g(z) at a sequence of distinct points $z = z_1, z_2, \ldots$, when can you conclude that f(z) = g(z) for all z in D?

b. If f(z) is an entire function such that |f(z)| < 1 for $|z| > 10^{10}$, what can you conclude?

c. If $z \rightarrow w = f(z)$ is a one-to-one conformal mapping of a Jordan domain D_1 onto a domain D_2 , what additional information can you give to make the mapping unique?

d. If Γ_1 and Γ_2 are two curves going from point α to point β , when can you be sure that analytic continuation

M246-5/60

along Γ_1 will give the same result as along Γ_2 ?

III. Special questions.

a. Find the expansion, in powers of z, of the function

$$f(z) = \frac{1}{2\pi i} \int_{C} \frac{e^{(t-z^2/t)}}{t} dt$$

where C is the unit circle |t| = 1, described counter-clockwise.

b. Identify the functions defined by the following infinite products. (Hint: note where the zeros are.)

$$z \frac{\infty}{1} (m) \left(1 - \frac{z^2}{m^2 \pi^2}\right) =$$

$$\frac{1}{\sqrt{(m+\frac{1}{2})^2\pi^2}}$$
 =

$$z \frac{\infty}{1} (m) \left(1 + \frac{z^2}{m^2 \pi^2}\right) =$$

c. Evaluate the following integrals by the residue theorem. (Describe the contour used.)

$$\int_{-\infty}^{\infty} \frac{dx}{x^2+1} =$$

$$\int_{-\infty}^{\infty} \frac{dx}{x^{4}+1} =$$