Advanced Analysis: Problem Set 1 (due Tues. Jan 16)

Math 509, Spring 2007
Jerry L. Kazdan

This first problem set should all be review of material you already know.

1. In a metric space, if a subsequence of a Cauchy sequence x_{j} converges to some point x, show that the whole sequence also converges to x.
2. Let $p>1$ and define q by $1 / p+1 / q=1$. Prove Young's inequality: for all real r and s :

$$
|r s| \leq \frac{|r|^{p}}{p}+\frac{|s|^{q}}{q}
$$

[REMARK: There are many (elementary) ways to show this; none of them are completely obvious.]
3. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $1<p<\infty$, let $\|x\|_{p}:=\left[\sum\left|x_{j}\right|^{p}\right]^{1 / p}$.
a) As a corollary of the previous problem prove Hölder's inequality:

$$
\sum_{j=1}^{n}\left|x_{j} y_{j}\right| \leq\|x\|_{p}\|y\|_{q}
$$

b) Use Hölder's Inequality (see above) to prove the triangle inequality for the p-norm: $\left\|\|_{p}\right.$.
4. A set D in the plane is arcwise connected if for any two points in D there is a polygonal curve (in D) joining them. Show that an open connected set is arcwise connected.
5. Compute $\int_{0}^{a} x^{2} d x$ directly by using Riemann sums (not as the anti-derivative). You may use without proof that $1^{2}+2^{2}+\cdots+k^{2}=\frac{1}{6} k(k+1)(2 k+1)$.
6. Find a smooth function $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ that has exactly three critical points in \mathbb{R}^{2}, one a local max, one a local min, and one a saddle point. [SUGGESTION: Seek f in the special form $f(x, y)=g(x) /\left(1+y^{2}\right)$.]
7. Find all of the critical points of $f(x, y)=\left(x^{2}+2 y^{2}\right) e^{-\left(x^{2}+y^{2}\right)}$. Here (x, y) is a point in \mathbb{R}^{2}. Classify these points as max, min, or saddles. You may find it interesting to plot this using Maple. Here is the code:

```
with(plots):
f:=(x,y) -> (x^2+2* \ ^ 2)*exp (- (x^2+y^2));
plot3d(f(x,y), x=-6..6, y=-3..3, orientation=[20,70], grid=[60,60]);
```

8. Let $u(x)$ be a smooth function of $x=\left(x_{1}, \ldots, x_{n}\right)$ and assume that the Hessian matrix

$$
u^{\prime \prime}(p):=\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)
$$

at the point $p=\left(p_{1}, \ldots, p_{n}\right)$ is non-singular (that is, it is invertible).
a) At a point p, let $v \neq 0$ be a given vector, $\varphi(t):=u(p+t v), t \in \mathbb{R}$, be the restriction of u to the straight line $x=p+t v$. Show that the Hessian matrix $u^{\prime \prime}(p)$ is positive definite if and only if $\varphi^{\prime \prime}(0)>0$ for all directions v. Is it enough if we only check the vectors v in an orthonormal basis?
b) Use the example $u(x, y)=\left(y-x^{2}\right)\left(y-2 x^{2}\right)$ to show the conclusion may be false if $u^{\prime \prime}(p)$ is not invertible.
9. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and assume that $u(x)$ depends only on the distance to the origin, $r=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$, so $u(x)=f(r)$ for some function f depending only on r.
a) Show that $\frac{\partial u}{\partial x_{i}}=\frac{x_{i}}{r} \frac{d f}{d r}$.
b) Show that $\frac{\partial^{2} u}{\partial x_{i}^{2}}=\frac{d^{2} f}{d r^{2}}\left(\frac{x_{i}^{2}}{r^{2}}\right)+\frac{d f}{d r}\left(\frac{1}{r}-\frac{x_{i}^{2}}{r^{3}}\right)$.
c) Compute $\Delta u:=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2} u}{\partial x_{n}^{2}} \quad$ in terms of f and its derivatives.
d) If $n=3$, use this to find all functions $u(x)=f(r)$ that satisfy $\Delta u=0$ for all $x \neq 0$.

Bonus Problem: Let $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function with exactly one critical point, and that critical point is a strict local minimum (say the critical, point is at the origin and the Hessian matrix there is the identity matrix, $\left.f^{\prime \prime}(0,0)=I\right)$. Can one conclude that the origin is the global minimum? Proof or counter-example.

