
Logic Notation: Convergence and Continuity

Reference: This is copied from the book Fundamentals of Abstract Analysis by Andrew
Gleason.

Convergence of a Sequence

1. A sequence xn of real numbers is said to be increasing (or monotone increasing) if

(∀m, n) (m > n) ⇒ xm ≥ xn.

2. Let zn be a sequence of complex numbers. The sequence is said to converge to z, in
symbols, zn → z, if

(∀ǫ > 0) (∃N ∈ N) (∀n > N) |zn − z| < ǫ.

3. Let zn be a sequence of complex numbers. The sequence is said to converge if

(∃z ∈ C) (∀ǫ > 0) (∃N ∈ N) (∀n > N) |zn − z| < ǫ.

In greater detail:
Since this begins with an existential quantifier, we must move first by choosing a number
z. Since the next quantifier is universal, our opponent moves next by choosing a positive
number ǫ. The opponent will presumably make the best possible move and choose ǫ so that

(∃N ∈ N) (∀n > N) |zn − z| < ǫ

is false (if possible). Now it is our move to choose a number N with a knowledge of
the previous moves, that is, N may (and surely will) depend on both z and ǫ. Finally
our opponent chooses a number n > N and the burden is on us to prove the inequality
|zn − z| < ǫ.

Chess: Checkmate

4. Using this language, for a chess game, the usual “white mates in two moves” can be
thought of as:

(∃ white move) (∀ black moves) (∃ white move) (∀ black moves) black is checkmated

where of course “black is checkmated” means “white can capture black’s king”.



Continuous Functions

5. Let S and T be metric spaces with metrics dS(·, ·) and dT (·, ·) and f : S → T . Then f
is continuous at a point p ∈ S if

(∀ǫ > 0) (∃δ > 0) (∀q ∈ S) dS(p, q) < δ ⇒ dT (f(p), f(q)) < ǫ.

f is continuous on the whole set S if it is continuous at each point of S. More formally,

(∀p ∈ S) (∀ǫ > 0) (∃δ > 0)(∀q ∈ S) dS(p, q) < δ ⇒ dT (f(p), f(q)) < ǫ.

We restate this in terms of sequences. Say p ∈ S. Then f is continuous at p if and only for
every sequence xn → p then f(xn) → f(p). That is

lim f(xn) = f(lim xn)

We can also restate the definition of continuity in terms of balls BS(p, δ) and BT (s, ǫ) in
S and T , respectively:

(∀p ∈ S) (∀ǫ > 0) (∃δ > 0) f(BS(p, δ)) ⊆ BT (f(p), ǫ).

5’. Equivalent Definition of Continuity

It is interesting that one can describe “continuity” in a dramatically different way without
using “limit” or explicitly referring to the metric. As a consequence, this is used as the
definition of continuity in more general topological spaces that are not metric spaces. It
also simplifies many proofs.

Some notation: Let f : S → T . If S0 is a subset of S, denote by f(S0) the set of all image
points of S0 under the function f , so

f(S0) = {t ∈ T : t = f(s) for some s ∈ S0}.

Similarly, if T0 is a subset of T , denote by f−1(T0) the set of all points in S whose image is
in T0:

f−1(T0) = {s ∈ S : f(s) ∈ T0}.

f−1(T0) is called the preimage of T0. It can happen that no points in S have their image in
T0. A simple example is the map f : R → R defined by f(s) = s2 and T0 = {t ∈ R : t < 0}.
Then the preimage of this T0 is empty since the square of any real number is not negative.

Caution The operation f−1 applied to subsets of T behaves nicely. It preserves inclusions,
unions, intersections and differences of sets. However the operation f applied to subsets of
S is more complicated.
Note also that if f : S → T , while

f−1(f(S0)) ⊃ S0 for S0 ⊂ S and f(f−1(T0)) ⊂ T0 for T0 ⊂ T,



equality often does not hold. Here is a (non-pathological) example:

Let f : R → R be f(x) = 2x2 + 1 and use the standard
notation [a, b] = {a ≤ x ≤ b}. Since f is not one-to-one,
then two different sets can have the same images

f([0, 1]) = f([−1, 1]) = [1, 3].

while because f is not onto, two different sets can have the
same preimages

f−1([0, 3]) = f−1([1, 3]) = [−1, 1],
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f(x) = 2x2 + 1

Using these we obtain the examples:

f−1(f([0, 1])) = f−1([1, 3]) = [−1, 1] and f(f−1([0, 3])) = f([−1, 1]) = [1, 3].

Theorem Let S, T be metric spaces and f : S → T . Then f is continuous on S ⇐⇒ for

any open set G ⊂ T , the set f−1(G) is open. That is, the preimage of an open set is open.

Proof: =⇒ Say f is continuous and we are given an open set G ∈ T . If f−1(G) is the
empty set, there is nothing to prove. Thus, say p ∈ f−1(G). This means there is a point
q ∈ G with f(p) = q. We need to find a ball U := BS(p, δ) around p so that f(U) ⊂ G.
Since G is open, it contains some ball V := BT (q, ǫ). By the continuity of f there is a δ > 0
so that f(U) ⊂ V . Thus the open set U is in the preimage of G. �

⇐=. Say the preimage of any open set G ⊂ T is open. To show that f is continuous at
every point p ∈ S. Given any ǫ > 0, let G := BT (f(p), ǫ). We need to find a δ > 0 so that
image of BS(p, δ) ⊂ BT (f(p), ǫ). But since the preimage of G is open, it contains some
small ball BS(p, δ) around p. �

Using that a set is closed if and only if its complement is open and that f−1(T c
0
) = [f−1(T0)]

c

for every subset T0 ⊂ T , we can use closed sets instead of open sets to varify continuity.
That is,

Corollary Let S, T be metric spaces and f : S → T . Then f is continuous on S ⇐⇒
for any closed set C ⊂ T , the set f−1(C) is closed. That is, the preimage of a closed set is

closed.

6. In general if f is continuous at every point p of a metric space, the choice of δ will depend
on both ǫ and the particular point p. If given ǫ we can find a δ that works simultaneously
for every point p then the function is said to be uniformly continuous. More formally

(∀ǫ > 0) (∃δ > 0) (∀p, q ∈ S) dS(p, q) < δ ⇒ dT (f(p), f(q)) < ǫ).

Equivalently:
(∀ǫ > 0) (∃δ > 0) (∀p ∈ S) f(BS(p, δ)) ⊆ BT (f(p), ǫ).



Convergence of a Sequence of Functions

If S is a set, (T, d) is a metric space and {fn} : S → T is a sequence of functions, the next
two definitions concern the convergence of the {fn} to a function g.

7. {fn} is said to converge pointwise to g if for all p ∈ S we have fn(p) → g(p). In greater
detail

(∀p ∈ S) (∀ǫ > 0) (∃N ∈ N)(∀n > N) d(fn(p), g(p)) < ǫ.

9.. {fn} is said to converge to g uniformly on S if

(∀ǫ > 0) (∃N ∈ N) (∀n > N) (∀p ∈ S) d(fn(p), g(p)) < ǫ.

For pointwise convergence the choice of N can depend on p, while for uniform convergence
the same N works simultaneously for all p ∈ S.
For example, if S = {0 < x < 1} then fn(x) := xn converges pointwise but not uniformly
to g(x) := 0. However if S := {0 < x < 1/2} then fn does converge uniformly to 0.

[Last revised: November 11, 2014]


