Differentiate Limit $f_n \to f$

Say f_n are a sequence of smooth functions that converge to some function f(x). Is f differentiable and does f'_n converge to f'(x)?

Sometimes, sometimes not.

Here is one (standard) theorem that is useful.

Theorem Let $f_n \in C^1([a, b])$. Assume

(i). For some $x_0 \in [a, b]$ the sequence $f_n(x_0)$ converges, say $f_n(x_0) \to c$.

(ii). The $f'_n(x)$ converge uniformly to some function, say $g(x) \in C([a, b])$ in [a, b].

Then there is a function $f \in C^1([a,b])$ so that $f_n \to f$ uniformly in [a,b] with $f(x_0) = c$ and f'(x) = g(x) for $x \in [a,b]$.

PROOF For $x \in [a, b]$ the obvious candidate for f is

$$f(x) = c + \int_{x_0}^x g(t) \, dt.$$

It clearly satisfies $f(x_0) = c$, is in $C^1([a, b])$, and, by the Fundamental Theorem of Calculus satisfies f'(x) = g(x). We need only show that f_n converges uniformly to this f. By the Fundamental Theorem of Calculus, for $x \in [a, b]$

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t) \, dt$$

Therefore

$$f_n(x) - f(x) = [f_n(x_0) - c] + \int_{x_0}^x [f'_n(t) - g(t)] dt.$$

But given $\epsilon > 0$ there are integers N_1 and N_2 so that if $n \ge N_1$ then $|f_n(x_0) - c| < \epsilon$ while if $n \ge N_2$ then using the supremum norm on [a, b] then $||f'_n - g|| < \epsilon$. Thus, if $n \ge \max\{N_1, N_2\}$ then

$$|f_n(x) - f(x)| \le \epsilon + \epsilon(b - a).$$

Because the right hand side holds for all $x \in [a, b]$, this proves the uniform convergence of f_n to f in the interval [a, b].