Problem Set 0: Rust Remover

DUE: Thurs. Sept. 4, 2008. These problems will not be collected.

You should already have the techniques to do these problems. They should not take much time.

- 1. a) Graph the points (x,y) in the plane \mathbb{R}^2 that satisfy |y-x| > 2.
 - b) Graph the points z = x + iy in the complex plane that satisfy 1 < |z i| < 2.
- 2. a) If $r(\neq 0)$ is a rational number and x is irrational, show that both r+x and rx are *irrational*.
 - b) Prove that there is no rational number whose square is 12.
 - c) Write the complex number $z = \frac{1}{a+ib}$ in the form c+id, where a, b, c are d are real numbers. Of course assume $a+ib \neq 0$.
- 3. a) Show that for any positive integer n, the number $2^{n+2} + 3^{2n+1}$ is divisible by 7.
 - b) Does this use that fact that we customarily write our integers base 10?.
 - c) Generalize part (a).
- 4. Let z, w, z_1, \ldots, z_n be complex numbers
 - a) Prove the *triangle inequality*: $|z_1 + \cdots + z_n| \le |z_1| + \cdots + |z_n|$ (first do the case n = 2).
 - b) Show that $||z| |w|| \le |z w|$.
- 5. Let the continuous function $f(\theta)$, $0 \le \theta \le 2\pi$ represent the temperature along the equator at a certain moment, say measured from the longitude at Greenwich. Show there are antipodal points with the *same* temperature.
- 6. A certain function f(x) has the property that $\int_0^x f(t) dt = e^x \cos x + C$. Find both f and the constant C.
- 7. If $b \ge 0$, show that for every real c the equation $x^5 + bx + c = 0$ has exactly one real root.

1

- 8. Let $p(x) := x^3 + cx + d$, where c, and d are real. Under what conditions on c and d does this has three distinct real roots? [HINT: Sketch a graph of this cubic. Observe that if there are three distinct real roots then there is a local maximum and the polynomial is positive there. What about a local min?].
- 9. Prove that the function $\sin x$ is not a polynomial. That is, there is no polynomial

$$p(x) = a_0 + a_1 x + ... + a_n x^n$$

with real coefficients so that $\sin x = p(x)$ for all real numbers x. In your proof you can use any of the standard properties of the function $\sin x$.

[Last revised: August 28, 2008]