
Math 425 Dr. DeTurck
Notes and exercises on Black-Scholes March 2008

Last Thursday we talked in class about how to derive the Black-Scholes differential
equation, which is used in mathematical finance to assign a value to a “financial deriva-
tive”. The latter is usually the option to buy (a “call” option) or sell (a “put” option)
a share of stock at a price specified in advance at some date in the future.

We’re only going to discuss what are called “European” options, which are options
that can be exercised only at the “expiry date” in the future. There are also “American”
options, which can be exercised at any time up to the expiry date. These lead to
interesting PDE problems as well (so-called “free boundary problems”), but we’ll save
that for some later time.

There are lots of assumptions, some realistic and some not, that go into the derivation.
For instance, we assume that the risk-free interest rate r (what you could get by putting
your money in the bank or in government-backed securities) is a constant, so that if you
knew that the value of the stock at time T was going to be S, then the value at time
t < T will be Se−r(T−t), the standard present-value computation.

A second assumption is that the return on the stock follows a special kind of random
walk called a Wiener process – this is the same process one observes in Brownian motion.
Basically, it says that if you know a particle’s position at time t = 0, then all you can
say about its position in the future is that it is a normally-distributed random variable
with mean 0 and variance proportional to the time t, say σ2 = 2kt.

If we remember from stat class that the probability density function for the normal
distribution with mean 0 and variance σ2 is

f(x) =
1

σ
√

2π
e−x

2/(2σ2),

then the probability density function for the position of our particle at time t is

F (x, t) =
1√

4πkt
e−x

2/4kt

for t > 0, which we recognize as the fundamental solution of the heat equation.

So we should be on the lookout for something related to the heat equation. There
are two complications:

• Since it’s the return and not the price of the stock that changes according to the
Wiener process, it’s the logarithm of the price that is normally distributed, and
we’ll have to be alert for an appropriate change of variable

• When we think about our stock options, the only time we actually know their
value as a function of the stock price is at the future time when the option is to be
exercised, and so we’ll have to solve for the current value of the option by working
backwards in time.
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To derive the Black-Scholes equation, we’ll indulge in a tiny bit of the theory of
stochastic processes, picking off only what we need. If you take a course in stochastic
processes sometime, you’ll learn this stuff much more rigorously and in greater detail.

Suppose S(t) is the price of the asset (stock) on which our option will be based. The
rate of return on the asset is dS/S, and it will have two parts: a deterministic part µ dt
that describes in general how the asset’s price changes with time – the parameter µ is
estimated based on the history of the asset’s price. For example, a bank deposit will
have return rate r dt as noted above. The other part of the return rate will be stochastic,
based on the random walk described above, and we’ll write it as σ dX, where σ is called
the volatility of the asset (which is again estimated using past performance) and dX
represents the standard random Wiener process, so that

dX = φ
√
dt

where φ is a standard normal random variable, so that E[φ] = 0 and E[φ2]=1. Here
E[· · ·] is the expectation (or expected value) of a random variable – if the random
variable X has probability density function f(x), then

E[X] =
∫ ∞
−∞

xf(x) dx.

so

E[X2] =
∫ ∞
−∞

x2f(x) dx

and it would be the same for any function of X.

Recalling that the variance of a random variable is the expected value of the square
of the difference between a random variable and its mean, we know that

Var[X] = E[(X−E[X])2] = E[X2]−E[E[X]X]+E[E[X](X−E[X])] = E[X2]−(E[X])2,

owing to the linearity of expectation, the fact that E[X] is a number, and the expected
value of X − E[X] is of course zero.

So we start from
dS

S
= σ dX + µ dt

and these observations about expection to calculate:

E[dS] = E[σS dX + µS dt] = µS dt

because E[dX] =
√
dtE[φ] = 0, and

Var[dS] = E[(dS)2]− (E[dS])2 = E[σ2S2(dX)2] = σ2S2 dt,

because of E[dX] = 0 again, and the fact that E[(dX)2] = E[φ2 dt] = dt.

The deep result we need from stochastic calculus is called Itô’s Lemma. It describes
how a function of a random variable changes in the same way that Taylor’s theorem
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describes how a function of an ordinary deterministic variable changes. To provide some
motivation (not to be confused with proof), we start with Taylor’s theorem as follows:

If f(S) is a smooth function of S, then Taylor’s theorem tells us that:

df =
df

dS
dS +

1

2!

d2f

dS2
(dS)2 + · · ·

where we’re writing dS instead of S−S0 and df instead of f(S)−f(S0) for convenience.

In our stochastic world, we have that (dX)2 is comparable to dt, so if we replace dS
by the expression we postulated for dS above, namely

dS = σS dX + µS dt,

and discard all terms of degree higher than 1 (counting dt as having degree 1 and dX
as having degree 1/2), then Taylor’s theorem becomes:

df =
df

dS
(σS dX + µS dt) +

1

2
σ2S2 d

2f

dS2
dt+ · · ·

= σS
df

dS
dX +

(
µS

df

dS
+

1

2
σ2S2 d

2f

dS2

)
dt+ · · ·

Dropping the · · · and thinking of df as an actual (stochastic) differential, this is Itô’s
Lemma for a function f of a random variable S:

df = σS
df

dS
dX +

(
µS

df

dS
+

1

2
σ2S2 d

2f

dS2

)
dt.

We will need a slight extension of Itô’s Lemma, to functions that depend on the
deterministic time variable t as well as on S. But this extension is easy becuase it just
involves adding the linear dt term from the two-variable Taylor series as follows:

df = σS
∂f

∂S
dX +

(
µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
+
∂f

∂t

)
dt.

We’re almost ready to derive the Black-Scholes equation, but we need a few financial
observations concerning stock options. We’ll use these to get our initial (actually, “final”)
data for our PDE problem, as well as at a key juncture in the derivation of the PDE
itself. The fundamental observation is that we know what the value C of a (European)
call option will be at the moment T it expires as a function of the stock price S at that
moment. Namely, since the call option gives us the right to buy a share of the stock at
the “strike price” E, the option will be worthless (C = 0) if S < E (why pay E when
you can buy the stock on the open market for S?), and will be worth the difference
S − E between the actual price and the strike price if S > E. We’ll write this as

C(S, T ) = (S − E)+.
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Likewise, we know the value P of a (European) put option at time T . Since this is
the option to sell a share at price E, it’s worthless if S > E and worth E − S if S < E.
We’ll write this as

P (S, T ) = (E − S)+.

Using these expressions, we can construct a collection of items whose value is com-
pletely determined at time T . Namely, we buy a share of stock and a put option with
strike price E and expiry time T , and “sell short” (sell something we don’t own) a call
option with the same E and T . At time T , this bundle will be worth:

S + P (S, T )− C(S, T ) = S + (E − S)+ − (S − E)+ = E.

And then the standard present value calculation tells us that at any time t < T , this
bundle will be worth:

S + P − C = Ee−r(T−t).

In finance-speak, this equation is called put-call parity.

Now we’re ready to derive the Black-Scholes equation. We’ll do it for a more-or-less
arbitrary financial derivative, which could be either a put option, a call option, some
combination of these, or some other kind of instrument as long as its value at the expiry
time T is known as a function of the stock price S at that time. So we’ll derive the
equation for V (S, t), the value of the derivative at time t and stock price S(t) (so V
would be C as above for a call option and P for a put option).

From Itô’s Lemma, we know that the differential dV satisfies:

dV = σS
∂V

∂S
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt.

To get a partial differential equation from this stochastic one, we’ll create another deriva-
tive that is identical to the original one, except that we’ll also sell short k shares of the
underlying stock. So the value W of this new derivative is W = V − kS, and the
stochastic equation for the value W is then

dW = σS

(
∂V

∂S
− k

)
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µkS

)
dt.

Our objective here is to eliminate the random element, so we want to choose k so that
the dX term will disappear from the equation, and only the deterministic dt term will
remain. We can do this (to first order) by choosing k = ∂V

∂S
, which will make

dW =

(
1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt.

Now, since dW is deterministic, the finance concept of arbitrage (which says basically
that if the value of an asset is deterministic, i.e., risk-free, then its value has to increase
at the same rate as the prevailing interest rate r), we get that dW = rW dt. And using
the definitions of W and k, we see that

r

(
V − ∂V

∂S
S

)
dt =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt.
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Now we can divide through by dt to get the Black-Scholes equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

In this equation, we’re looking for V (S, t) and the interest rate r and the stock’s volatility
σ are “known” constants. It’s interesting that the stock’s growth rate µ doesn’t appear
in the equation at all.

Now we (that is, you) need to solve the equation with various “final” conditions at
time T . In particular, we need to do this for C and P with the conditions given above.

To derive the solution, the main part of the work is to convert the Black-Scholes
equation into the usual heat equation. To do this, you’ll have to make three kinds of
changes of variable:

• To get the time running in the right direction, you can define a new variable τ =
T − t. Then t = T will correspond to τ = 0.

• Since it was dS/S = d(logS) that satisfied the standard Wiener process that leads
to the usual heat equation, it makes sense to define a new variable x = log S
(natural logarithm). This should get rid of the appearances of the independent
variable S or x multiplying the various derivatives.

• As you practiced in chapters 2 and 3, a substitution of the form u = eαx+βτV can
be used to get rid of unwanted constants and first-order in x terms.

1. With these hints, show that the value of a European call option with strike price
E and expiry time T is given by:

C(S, t) = SF (A+)− E−r(T−t)F (A−)

where F (x) is the cumulative distribution function for the standard normal distri-
bution:

F (x) =
1√
2π

∫ x

−∞
e−p

2/2 dp,

and the constants A± are given by

A± =
log(S/E) + (r ± 1

2
σ2)(T − t)

σ
√
T − t

2. Find the value of a European put option in more-or-less the same form.

3. Verify that your formulas satisfy put-call parity.

4. Find the value B(S, t) of a straight bet on the stock price: this is an option that
pays $1 if the stock price S is greater than E at expiry time T , otherwise it pays
nothing.

5. Use Maple or some other computer program to draw some graphs of C, P and B
for some reasonable choices of r, E, T and σ (if time is measured in years, then
reasonable choices for T are between 0.5 and 1.5 and for σ around 0.25).


