Problem Set 7

DuE: Thurs. Oct. 29 in class. [Late papers will be accepted (without penalty) until 1:00 PM Friday.]

>	Note: The date of Exam 2 has been changed to Tuesday, Nov. 10.

Please carefully read Sections 8.1-8.4 in the Marsden-Hoffman text.
The following short answer problems from Marsden-Hoffman are not assigned, but you should know how to do them. Some short answer problems will be on our exams.

$$
\text { p. } 413 \# 1,2,3, \quad \text { p. } 444 \# 35
$$

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth map.
a) If $\|\nabla f(x)\| \leq M$ everywhere, show that $\|f(x)-f(y)\| \leq M\|x-y\|$.
b) Let A be the annular region $A:=\left\{x \in \mathbb{R}^{2}: 1<\|x\|<2\right\}$ and $f: A \rightarrow \mathbb{R}$ a smooth map. If $\|\nabla f(x)\| \leq M$ for all points in A, estimate $\|f(x)-f(y)\|$ for x and y in A.
2. Proof or Counterexample? There is no smooth function defined on \mathbb{R}^{2} with exactly two critical points, both non-degenerate local minima.
3. If $h(x, y)=x^{2}-2 x y+5 y^{2}$, since then $h(x, y)=(x-y)^{2}+4 y^{2}$, it is clear that under the change of coordinates $u=x-y, v=2 y$ we can write $h=u^{2}+v^{2}$ as a sum of squares.
Prove (with your bare hands, not using the Morse Lemma) that one can do this near the origin for any smooth function $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ with the properties that

$$
f(0,0)=0, \quad f^{\prime}(0,0)=0, \quad f^{\prime \prime}(0,0) \text { is positive definite. }
$$

[Here f^{\prime} is the gradient and $f^{\prime \prime}$ the second derivative matrix.]
4. a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function with the properties that $f^{\prime \prime}(x) \geq 0$ and $f(x) \leq C$ for all $x \in \mathbb{R}$. Show that $f(x)=$ constant.
b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function with the properties that the hessian matrix $f^{\prime \prime}(x)$ is positive semi-definite and that $f(x) \leq C$ for all $x \in \mathbb{R}^{2}$. Does this imply that $f(x)=$ constant? Proof or counterexample.
5. [Marsden-Hoffman, p. $439 \# 6$] Determine whether the "curve" described by the equation $x^{2}+y+\sin (x y)=0$ can be written in the form $y=f(x)$ in a neighborhood of $(0,0)$.
Does the implicit function theorem allow you to say weather the equation can be written in the form $x=h(y)$ in some neighborhood of $(0,0)$?
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $f(x, y)=(u(x, y), v(x, y))$ and assume that u and v satisfy the Cauchy-Riemann equations

$$
u_{x}(x, y)=v_{y}(x, y) \quad \text { and } \quad u_{y}(x, y)=-v_{x}(x, y) .
$$

a) Show that this map is invertible near a point (x, y) if and only if $\operatorname{Df}(x, y) \neq 0$.
b) Show that the inverse map also satisfies the Cauchy-Riemann equations.
7. [Marsden-Hoffman p. 420 \#4] Find the extrema of $f(x, y, z)=x+y+z$ subject to the constraints: $x^{2}+y^{2}=1,2 x+z=1$.
8. [Marsden-Hoffman p. 444 \#35] Find the relative extrema of $f(x, y)=x^{2}+y^{2}$ subject to the constraint $x^{2}-y^{2}=1$.
9. [Marsden-Hoffman p. 444 \#38] A rectangular box with no top is to have a surface area of 16 square meters. Find the dimensions that maximize the volume.
10. Let A be a real square symmetric matrix and let $v \in \mathbb{R}^{n}$ be a point on the unit sphere, $\|x\|=1$, where $f(x)=\langle x, A x\rangle$ has its maximum. Show that v is an eigenvector of A. What is the corresponding eigenvalue?
11. [CONTINUATION of the previous problem] Say $w \in \mathbb{R}^{n}$ is a point maximizing $f(x)$ in the set $\|x\|=1$ with w also perpendicular to v, so $\langle w, v\rangle=0$. Show that w is also an eigenvector of A.

Bonus Problem

[Please give these directly to Professor Kazdan]
B-1 a) If $u\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a given smooth function, let $u^{\prime \prime}:=\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)$ be its second derivative (Hessian) matrix. Find all solutions of $\operatorname{det}\left(u^{\prime \prime}\right)=1$ in the special case where $u=u(r)$ depends only on $r=\sqrt{x_{1}^{2}+\cdots x_{n}^{2}}$, the distance to the origin.
b) Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and A be a square matrix with $\operatorname{det} A=1$. If $u(x)$ satisfies $\operatorname{det}\left(u^{\prime \prime}\right)=1$ (see above), and $v(x):=u(A x)$, show that $\operatorname{det}\left(v^{\prime \prime}\right)=1$ also. [Remark: the differential operator $\operatorname{det}\left(u^{\prime \prime}\right)$ is interesting because its symmetry group is so large.]
[Last revised: October 29, 2015]

