Problem Set 8

Due: Thurs. Nov. 8 in class. [Late papers accepted (without penalty) until 1:00 PM Friday.]

Please read the noteshttps://www.math.upenn.edu/~kazdan/320F18/Notes/vectors12. pdf on Vectors and Least Squares
and also Chapters 8.1, 7.1-7.2 in Burden-Faires
Problems

1. Notes on Vectors p. 16-19, \#2
2. Notes on Vectors p. 16-19, \#3
3. Notes on Vectors p. 16-19, \#4
4. Notes on Vectors p. 16-19, \#5b,c
5. Notes on Vectors p. 16-19, \#6
6. Notes on Vectors p. 16-19, \#7
7. Notes on Vectors p. 16-19, \#8
8. Notes on Vectors p. 16-19, \#9
9. Let $Z_{j}=\left(x_{j}, y_{j}\right), j=1, \ldots, N$ be (data) points in the plane \mathbb{R}^{2}, say the height and weight of the $j^{\text {th }}$ person in a medical test. Problem: find the straight line $\mathcal{L}:=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid a x+b y=c\right\}$ that best fits this data in the sense that it minimizes the function

$$
Q(\mathcal{L}):=\sum_{j=1}^{N}\left[\operatorname{Distance}\left(Z_{j}, \mathcal{L}\right)\right]^{2}
$$

a) Thus, we need to determine the parameters a, b, and c. As should be clear in your computation, it is simplest to investigate first the special case where $\sum_{j=1}^{N} Z_{j}=0$.
b) Apply this procedure to the data points $(0,0),(1,3)$, and $(2,7)$.
10. Burden-Faires, Sec. 8.1 \#8
11. Burden-Faires, Sec. $8.1 \# 13$
[Last revised: November 3, 2018]

