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Google’s PageRank algorithm

Random processes

Goal: model a random process in which a system
transitions from one state to another at discrete time steps.

At each time, say there are n states the system could be in.

At time k , we model the system as a vector ~xk ∈ Rn (whose
entries represent the probability of being in each of the n
states).

Here, k = 0, 1, 2, . . ., and “initial state” is ~x0.

Definition

A probability vector is a vector in Rn whose entries are
nonnegative and sum to 1.
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Cities/suburbs

Model a population in the city vs. suburbs. Say
~x0 = (0.60, 0.40)

(meaning 60% live in city, 40% live in
suburbs).

Given: each year, 5% of city dwellers move to suburbs (the
rest stay), and

3% of suburbanites move to city (the rest stay)

Let ~xk = (ck , sk). We’re told:

ck+1 = 0.95ck + 0.03sk

sk+1 = 0.05ck + 0.97sk

i.e.
~xk+1 = M~xk .

~x1 = (0.58, 0.42), ~x2 = (0.56, 0.44), ~x10 = (0.47, 0.53), etc.

For k large, ~xk limits to (0.375, 0.625).
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Markov chains

Definition

A Markov matrix (or stochastic matrix) is a square matrix M
whose columns are probability vectors.

Definition

A Markov chain is a sequence of probability vectors ~x0,~x1,~x2, . . .
such that ~xk+1 = M~xk for some Markov matrix M.

Note: a Markov chain is determined by two pieces of information.
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Steady-state vectors

Given a Markov matrix M, does there exist a steady-state
vector?

This would be a probability vector ~x such that M~x = ~x .

Solve for steady-state in city-suburb example.

Math 312



Markov chains: examples
Markov chains: theory

Google’s PageRank algorithm

Steady-state vectors

Given a Markov matrix M, does there exist a steady-state
vector?

This would be a probability vector ~x such that M~x = ~x .

Solve for steady-state in city-suburb example.

Math 312



Markov chains: examples
Markov chains: theory

Google’s PageRank algorithm

Steady-state vectors

Given a Markov matrix M, does there exist a steady-state
vector?

This would be a probability vector ~x such that M~x = ~x .

Solve for steady-state in city-suburb example.

Math 312



Markov chains: examples
Markov chains: theory

Google’s PageRank algorithm

Voter preferences

Suppose voter preferences (for parties “D”, “R” and “L”)
shift around randomly via the Markov matrix

A =

 0.70 0.10 0.30
0.20 0.80 0.30
0.10 0.10 0.40

 .

e.g. 20% of supporters of “D” transition to “R” each election
cycle.

Find steady-state.
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Questions

Questions:

How do we know a steady-state vector exists?

Does a steady-state vector always have nonnegative entries?

Is a steady-state vector unique? Can you ever guarantee it?

Does the Markov chain always settle down to a steady-state
vector?
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Existence

Theorem

If M is a Markov matrix, there exists a vector ~x 6= ~0 such that
M~x = ~x .

Proof:

We’re done if M − I has a nontrivial kernel (i.e., M − I is not
invertible).

so we’re done if (M − I )T has a nontrivial kernel (but
(M − I )T = MT − I ).

But I can find a vector in kernel of MT − I .
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Uniqueness

Can there be more than one steady-state vector?

How about M = In?
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Long-term behavior

Must the system “settle down” to a steady-state?

How about M =

[
0 1
1 0

]
?
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Main theorem

Perron–Frobenius Theorem (circa 1910)

If M is a Markov matrix with all positive entries, then M has a
unique steady-state vector, ~x .

If ~x0 is any initial state, then
~xk = Mk~x0 converges to ~x as k →∞.
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Google’s PageRank

Problem: Given n interlinked webpages, rank them in order of
“importance”.

Assign the pages importance scores x1, x2, . . . , xn ≥ 0.

Key insight: use the existing link structure of the web to
determine importance.

A link to a page is like a vote for its
importance.

How does this help with web searches?

Working example: n = 4. Page 1 links to 2, 3, and 4. Page 2
links to 3 and 4. Page 3 links to 1. Page 4 links to 1 and 3.
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Google’s PageRank algorithm

Idea 1

First attempt: let xk equal the number of links to page k .

Do this in example.

Criticism: a link from an “important” page (like Yahoo)
should carry more weight than a link from some random blog!
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Idea 2

Second attempt: let xk equal the sum of the importance
scores of all pages linking to page k .

Do this in example;

obtain a linear system.

Criticism 1: a webpage gets more “votes” (exerts more
influence) if it has many outgoing links.

Criticism 2: this system only has the trivial solution!
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Idea 3

Third attempt (Brin and Page, late 90s): let xk equal the sum
of xj/nj , where

the sum is taken over all the pages j that link to page k , and

nj is the number of outoing links on page j .

That is, a page’s number of votes is its importance score, and
it gets split evenly among the pages it links to.

Do example.

Write in matrix form.

Solve, and rank the pages by importance.
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Google’s PageRank algorithm

Summary

Summary: given a web with n pages, construct an n × n
matrix A as:

aij =

{
1/nj , if page j links to page i

0, otherwise
,

where nj is the number of outgoing links on page j .

Sum of jth column is nj/nj = 1, so A is a Markov matrix.

The ranking vector ~x solves A~x = ~x .

Possible issues:

Existence of solution with nonnegative entries?

Non-unique solutions?
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Google’s PageRank

PF Theorem guarantees a unique steady-state vector if the
entries of A are strictly positive.

Brin–Page: replace A with

B = 0.85A + 0.15(matrix with every entry 1/n).

B is a Markov matrix.

PF Theorem says B has a unique steady-state vector, ~x .

So ~x can be used for rankings!
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Google’s PageRank algorithm

Stochastic interpretation of PageRank

What does this have to do with Markov chains?

Brin and Page considered web surfing as a stochastic process:

Quote

PageRank can be thought of as a model of user behavior. We
assume there is a “random surfer” who is given a web page at
random and keeps clicking on links, never hitting “back” but
eventually gets bored and starts on another random page.

i.e., surfer clicks on a link on the current page with probability
0.85; opens up a random page with probability 0.15.

A page’s rank is the probability the random user will end up
on that page, OR, equivalently

the fraction of time the random user spends on that page in
the long run.
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