Math 312, Homework 10 (due Friday, November 30th)

Name: \qquad (if you choose to use this as a coversheet)

Reading Chapter 5 of Bretscher.

Book problems

- Section 5.3, problems 30 (no illustration necessary), 31, 44,
- Section 5.4, problem 32. (For extra practice, you may wish to do \#26)
- Section 5.5, problems 10, 16, 24

Additional Problems Recall that an $m \times n$ matrix A is orthogonal if $A^{T} A=I_{n}$ and a square matrix P is a projection matrix if $P^{2}=P$.

1. What are the possible values of the determinant of a projection matrix? What about the possible values of the eigenvalues?
2. Recall that the matrix of orthogonal projection onto the image of A is given by $P=A\left(A^{T} A\right)^{-1} A^{T}$. Verify that P is actually a projection matrix.
3. Let $\vec{x}(t)$ be a function taking values in \mathbb{R}^{n} that satisfies the ODE

$$
\frac{d}{d t} \vec{x}(t)=A \vec{x}(t),
$$

where A is a skew-symmetric $n \times n$ matrix. Prove that the length of $\vec{x}(t)$ is independent of t. (Hint: differentiate the length-squared, and use the last problem from last week's assignment.)
4. Verify that the L^{2} inner product (defined on the vector space of continuous functions on an interval $[a, b]$) is actually an inner product. (You may use familiar facts from calculus.)
5. Explain carefully why a matrix with more columns than rows can never be orthogonal.
6. Let $V \subset \mathbb{R}^{3}$ be the subspace spanned by $(1,2,3)$ and $(1,0,-1)$. Find the vector in V closest to the vector $(2,1,1)$. How far is this vector from W ?
7. Let A, B, C be $n \times n$ matrices, and let \langle,$\rangle be the usual dot product on \mathbb{R}^{n}$.
(a) Prove that if $\langle x, C y\rangle=0$ for all $x, y \in \mathbb{R}^{n}$, then C must be the zero matrix.
(b) Prove that if $\langle x, A y\rangle=\langle x, B y\rangle$ for all $x, y \in \mathbb{R}^{n}$, then $A=B$. (Hint: use the previous part!)
8. Let $f:[0,2 \pi]$ be the (discontinuous) function that equals 1 on $[0, \pi)$ and equals 0 on $[\pi, 2 \pi]$. Find all Fourier coefficients of f. (Hint: you'll need to evaluate the integrals in pieces.)
Using software (such as Wolfram Alpha or a graphing calculator), graph the terms of the Fourier series of f up through $\sin (5 x)$ and $\cos (5 x)$.
9. Let $f:[0,2 \pi]$ be the function $f(x)=x^{2}$. Find all Fourier coefficients of f. (Hint: you'll need to integrate by parts.)
Using software (such as Wolfram Alpha or a graphing calculator), graph the terms of the Fourier series of f up through $\sin (5 x)$ and $\cos (5 x)$.

