Math 312, Homework 9 (due Monday, November 19)

Name: \qquad (if you choose to use this as a coversheet)

Reading Section 7.6 and section 5.1 - 5.4 of Bretscher.

Book problems

- Section 7.6, problems 4, 10, 25, 26
- Section 5.1, problems 15, 16, 17, 19ab, 26, 28
- Section 5.2, problems 2, 6, 14, 32, 33
- Section 5.3, problems 5, 6, 7, 8, 10, 33, 36, 37
- Section 5.4, problems 21, 22

Additional Problems

1. Let $\mathbb{P}_{n}(\mathbb{C})$ denote the set polynomials with complex coefficients. This is a complex vector space, and also a real vector space. Give a basis for $\mathbb{P}_{2}(\mathbb{C})$ as a) a real vector space and b) a complex vector space.
2. Let A be a 2×2 matrix whose eigenvalues are not real.
(a) Suppose one of the eigenvalues has modulus 1. Explain why the other must as well.
(b) Explain why A must be diagonalizable.
3. Let W be a subspace of \mathbb{R}^{n}. Prove that W^{\perp} is also a subspace of \mathbb{R}^{n}.
4. Prove that $W=\left(W^{\perp}\right)^{\perp}$. (Hint: first prove that spaces have the same dimension. Second, prove that W is contained in $\left(W^{\perp}\right)^{\perp}$.)
5. Let A be a skew-symmetric matrix (meaning $A^{T}=-A$). Prove that $A \vec{x}$ is always orthogonal to \vec{x}. (For instance, this includes the case where A is rotation by 90°.) (Hint: use the fact that $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.)
