Math 312, Homework 7 (due Friday, November 2nd)

Name:______ (if you choose to use this as a coversheet)

Reading Chapter 7 of Bretscher (in section 7.1, only begin at the bottom of pg. 299)

Book problems

- Section 7.1, problems 1, 2, 3, 6, 8, 16
- Section 7.2, problems 2, 8, 12, 15, 24 (note the columns sum to 1), 32
- Section 7.3, problems 2, 8, 12, 18, 44
- Section 7.4, problems 2, 12, 19, 32

Additional Problems

- 1. Suppose λ is an eigenvalue of an $n \times n$ matrix A. Prove that the λ -eigenspace (call it E_{λ}) is a subspace of \mathbb{R}^n .
- 2. In class, we stated the theorem: "If A is $n \times n$ and has n distinct real eigenvalues, then A has n linearly independent eigenvectors," and proved the case for n = 2. Using a similar idea, prove the theorem for n = 3 (and notice how your proof would work for any n).
- 3. Suppose a matrix A has characteristic polynomial $\lambda^2(\lambda-1)(\lambda+2)^3$.
 - (a) Describe the eigenvalues of A and their (algebraic) multiplicities.
 - (b) What are the fewest and greatest number of linearly independent eigenvectors that A could have? Why?
 - (c) Is A invertible, or is there not enough information to tell? Why?
 - (d) What are the possible values of the rank of A? Why?
 - (e) Under what circumstances is A diagonalizable?
- 4. For which of the following linear transformations T of \mathbb{R}^2 is it possible to find a basis \mathcal{B} for which $[T]_{\mathcal{B}}$ is diagonal? Explain.
 - (a) A rotation by $\pi/4$ radians clockwise.
 - (b) A rotation by π radians counter-clockwise.
 - (c) A reflection across the line y = -x.
 - (d) A skew that sends $\vec{e_1}$ to itself and $\vec{e_2}$ to $-\vec{e_1} + \vec{e_2}$.