Math 312, Homework 7 (due Friday, November 2nd)

Name: \qquad (if you choose to use this as a coversheet)

Reading Chapter 7 of Bretscher (in section 7.1, only begin at the bottom of pg. 299)

Book problems

- Section 7.1, problems 1, 2, 3, 6, 8, 16
- Section 7.2 , problems $2,8,12,15,24$ (note the columns sum to 1), 32
- Section 7.3, problems 2, 8, 12, 18, 44
- Section 7.4, problems 2, 12, 19, 32

Additional Problems

1. Suppose λ is an eigenvalue of an $n \times n$ matrix A. Prove that the λ-eigenspace (call it E_{λ}) is a subspace of \mathbb{R}^{n}.
2. In class, we stated the theorem: "If A is $n \times n$ and has n distinct real eigenvalues, then A has n linearly independent eigenvectors," and proved the case for $n=2$. Using a similar idea, prove the theorem for $n=3$ (and notice how your proof would work for any n).
3. Suppose a matrix A has characteristic polynomial $\lambda^{2}(\lambda-1)(\lambda+2)^{3}$.
(a) Describe the eigenvalues of A and their (algebraic) multiplicities.
(b) What are the fewest and greatest number of linearly independent eigenvectors that A could have? Why?
(c) Is A invertible, or is there not enough information to tell? Why?
(d) What are the possible values of the rank of A ? Why?
(e) Under what circumstances is A diagonalizable?
4. For which of the following linear transformations T of \mathbb{R}^{2} is it possible to find a basis \mathcal{B} for which $[T]_{\mathcal{B}}$ is diagonal? Explain.
(a) A rotation by $\pi / 4$ radians clockwise.
(b) A rotation by π radians counter-clockwise.
(c) A reflection across the line $y=-x$.
(d) A skew that sends \vec{e}_{1} to itself and \vec{e}_{2} to $-\vec{e}_{1}+\vec{e}_{2}$.
