Math 312, Homework 6 (due Friday, October 26th)

Name: \qquad (if you choose to use this as a coversheet)

Reading Chapter 6 of Bretscher (and additional review of chapter 4 as needed). I also recommend you start reading chapter 7 .

Book problems

- Section 6.1, problems 21, 38, 40 (use shortcuts as necessary!) (Also do as many practice determinants in 1-22 that you need to feel very comfortable with these).
- Section 6.2 , problems $10,17,20,38,40$ (orthogonal means $A^{T} A$ is the identity)
- Section 6.3, problems 2, 7, 11

Additional Problems

1. Find all solutions to the ODE $f^{\prime \prime}-3 f^{\prime}+2 f=2 x^{2}-6 x+4$ by first finding the homogeneous solutions and then also a particular solution. (We did a similar example in class.)
2. Suppose $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are orthogonal unit vectors in \mathbb{R}^{3} such that $\vec{v}_{3}=\vec{v}_{1} \times \vec{v}_{2}$ (cross product).
(a) Let P be the matrix whose columns are $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. Explain why the transpose of P is also the inverse of P.
(b) Describe a formula for the matrix, in the standard basis, that rotates by θ radians about the line through \vec{v}_{3} in the direction from \vec{v}_{1} to \vec{v}_{2}. (Hint: you know how to find this matrix in the \vec{v}_{i} basis; you also know the change-of-basis formula.)
3. Let $V=M_{n, n}(\mathbb{R})$, the vector space of $n \times n$ matrices with real entries. Let P be an invertible $n \times n$ matrix. Define a transformation $T: V \rightarrow V$ by

$$
T(A)=P A P^{-1}
$$

(a) Show that T is linear.
(b) Prove that T is an isomorphism (by finding an inverse).
(c) Interpret what the linear transformation T is doing in terms of change-ofbasis.
4. Consider the problem of finding a polynomial of degree n passing through $n+1$ specified distinct points in the plane. For definiteness, take $n=3$, and say our points are $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$, and $\left(a_{4}, b_{4}\right)$. This problem involves \mathbb{P}_{3}, and so we could work in the usual basis $\left\{x^{3}, x^{2}, x, 1\right\}$. However, we will investigate how using a different basis can make our computations simpler.
(a) Consider the cubic polynomial

$$
p_{1}(x)=\frac{1}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right)}\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right) .
$$

What does $p_{1}(x)$ equal at the points $x=a_{1}, a_{2}, a_{3}, a_{4}$?
(b) Write down similar polynomials $p_{2}(x), p_{3}(x), p_{4}(x)$ that play the same roles for a_{2}, a_{3}, a_{4}, respectively.
(c) Prove that the set $\left\{p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right\}$ is linearly independent (you won't need to multiply them out!). Since $\operatorname{dim} \mathbb{P}_{3}=4$, this shows we have a basis (called a Lagrange basis).
(d) What linear combination of these 4 basis polynomials produces the polynomial passing through the desired four points?
(e) Using this approach, find the polynomial of degree 3 passing through the points $(0,-3),(1,-1),(2,11)$, and $(-1,-7)$.
5. Let S and T be linear transformations from a vector space V to itself. Suppose each of S and T have a 1-dimensional kernel. Our goal in this problem is to understand the dimension of the kernel of $T \circ S$.
(a) Explain why the kernel of $T \circ S$ must have dimension at least one.
(b) By finding examples using 2×2 matrices, show that it is possible for $T \circ S$ to have a one-dimensional kernel and a two-dimensional kernel (where each T and S have one-dimensional kernel).
(c) Back to the general case. Suppose there are three linearly independent vectors v_{1}, v_{2}, v_{3} in the kernel of $T \circ S$. Arrive at a contradiction by showing that either T or S has a kernel of dimension 2 or greater.

Remark: This shows the dimension of the kernel of $T \circ S$ must be either 1 or 2 .
6. In class we carefully showed that $f^{\prime \prime}+f=0$ has a 2-dimensional solution space. Here we will prove the same statement for a much larger class of ODEs. Suppose you're given the ODE:

$$
f^{\prime \prime}+b f^{\prime}+c f=0,
$$

where b and c are real constants. Our usual approach is to guess a solution of the form $f(x)=e^{r x}$, which leads to the quadratic equation

$$
r^{2}+b r+c=0 .
$$

We will assume this quadratic equation has real roots r_{1} and r_{2}, but we will NOT assume our solution has to be of the form $e^{r x}$.
(a) Let $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ be differentiation on the vector space of infinitely differentiable functions, and let I be the identity transformation. Find the kernels of the transformations $D-r_{1} I$ and $D-r_{2} I$ (using single-variable calculus). They will each be one-dimensional.
(b) Prove that the kernel of $\left(D-r_{1} I\right) \circ\left(D-r_{2} I\right)$ is the same as the solution space of the ODE we started with.
(c) Conclude the solution space of the ODE is at most two-dimensional (using the previous problem). What is a basis for it? (consider the cases $r_{1}=r_{2}$ and $r_{1} \neq r_{2}$ separately).

Remark: this technique readily generalizes to nth order linear, homogeneous ODEs with constant coefficients, and also to the case in which some of the roots are complex.
7. Consider a system of four interlinked webpages, described as follows.

- Pages 1 and 2 link to each other.
- Pages 3 and 4 link to each other.
- Pages 1 and 3 link to each other
- Page 1 links to page 4.

Find the 4×4 matrix A used in the Google PageRank algorithm for this web. Finally, by solving an appropriate linear system, determine which page gets ranked as the most important (using a computer if you wish, but it is not necessary). (Don't use the method involving 0.85 and 0.15.)
The article http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed. pdf explaining Google's algorithm may be helpful, but we covered enough material in class for you to solve this problem.
8. Suppose a mirror is located in the $x y$ plane, and you are living in the region $z>0$. What is the standard matrix of the linear transformation that sends you to your mirror image? Arguing geometrically, what is its determinant?

