Math 312, Homework 4 (due Friday, October 5th)

Name: \qquad (if you choose to use this as a coversheet)

Reading

- Read sections 3.4 and 4.1 of Bretscher. As needed, review sections $3.1-3.3$ and the additional material posted on blackboard.

Book problems NOTE: you can ignore the "GOAL" paragraph at the start of each exercise set in Bretscher - this is not a set of instructions for particular problems.

- Section 3.4, problems 2, 4, 7, 12, 19*, 22*, 27, 32, 45, 58 (* in 19 and 22, ignore the suggestions a,b,c; proceed however you wish)
- Section 4.1, problems (please be sure to explain your answers) $1,2,4,7,10,20$, 29.

Additonal problems

1. Are the following collections vector spaces? Explain. If so, find bases and compute the dimension.
(a) \mathbb{C}, the set of complex numbers
(b) the set of 3×3 symmetric matrices, A (meaning A equals its own transpose)
(c) the set of polynomials p of degree at most two such that $p(1)=0$
(d) the set of solutions f to the ODE:

$$
f^{\prime \prime}+2 f^{\prime}-10 f=0
$$

(e) the set of 2×2 matrices that commute with $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
2. For the $(7,4)$ Hamming code, consider the code generator matrix G and the parity check matrix P.
(a) Without doing any computations, explain why $P G$ is the zero matrix (using arithmetic mod 2). Hint: what happens to any vector $\vec{x} \in \mathbb{R}$ with binary entries when you apply G followed by P ?
(b) Suppose the sender wants to send the 4 bits $\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$. What 7 -bit vector should they send if they use the $(7,4)$ Hamming code?
(c) In another scenario, suppose the receiver gets the message $\left[\begin{array}{lllllll}0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\right]$. Did an error occur? What is the original 4 bit message?
3. Using our discussion on computer graphics, consider the linear transformation T of \mathbb{R}^{3} that first rotates about the x-axis by $\pi / 2$ (counter-clockwise from y to z), then $\pi / 2$ about the z-axis (counter-clockwise from x to y). (OVER)
(a) By looking at where T sends the standard basis vectors, find the standard matrix representation of T. (You might check your answer using matrix multiplication.)
(b) How many times must you apply T to obtain the identity?

