Math 312, Homework 3 (due Friday, Sep. 28)

Name: \qquad (if you choose to use this as a coversheet)

Reading

- Read sections chapter 3.1-3.3 of Bretscher.

Book problems NOTE: you can ignore the "GOAL" paragraph at the start of each exercise set in Bretscher - this is not a set of instructions for particular problems.

- Section 3.1, problems $12,20,22,34,36,39,40$
- Section 3.2, problems 2, 6, 8, 17, 18, 34, 40, 54
- Section 3.3, problems 16, 22, 28, 80

Additonal problems

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear tranformations, so $S \circ T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $T \circ S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Let the matrix of T be B and let the matrix of S be A.
(a) Why must there be a vector $\vec{x} \in \mathbb{R}^{3}$ such that $B \vec{x}=0$?
(b) Prove that $A B$ (a 3×3 matrix) can never be invertible.
(c) Give an example to show $B A$ (a 2×2 matrix) may be invertible.
2. Are the following subsets of \mathbb{R}^{2} actually subspaces? Explain.
(a) $\{(x, y) \mid x y=0\}$
(b) $\{(x, y) \mid x$ and y are integers $\}$
(c) $\{(x, y) \mid x+y=0\}$
(d) $\{(x, y) \mid x+y \geq 0\}$
3. Let T be a linear transformation with trivial kernel. Prove that if $T(\vec{x})=T(\vec{y})$, then $\vec{x}=\vec{y}$. (Hint: use subtraction.) Such transformations T are called one-toone.
4. Prove that if vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly dependent, then one of these vectors is a linear combination of the others.
5. Prove that the span of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{m} is always a subspace of \mathbb{R}^{m}.
6. Say $\vec{v}_{1}, \ldots \vec{v}_{k}$ are linearly independent in \mathbb{R}^{n}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear. Show by example that $T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{k}\right)$ need not be linearly independent. However, prove that these vectors are linearly independent if $\operatorname{ker}(T)$ is trivial.
7. Use Theorems from section 3.3 (or from class) to explain carefully why if V and W are subspaces with V contained inside of W, then $\operatorname{dim} V \leq \operatorname{dim} W$.
