Math 312, Homework 3 (due Friday, Sep. 28)

Name:______ (if you choose to use this as a coversheet)

Reading

• Read sections chapter 3.1–3.3 of Bretscher.

Book problems NOTE: you can ignore the "GOAL" paragraph at the start of each exercise set in Bretscher – this is not a set of instructions for particular problems.

- Section 3.1, problems 12, 20, 22, 34, 36, 39, 40
- Section 3.2, problems 2, 6, 8, 17, 18, 34, 40, 54
- Section 3.3, problems 16, 22, 28, 80

Additonal problems

- 1. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ and $S : \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformations, so $S \circ T : \mathbb{R}^3 \to \mathbb{R}^3$ and $T \circ S : \mathbb{R}^2 \to \mathbb{R}^2$. Let the matrix of T be B and let the matrix of S be A.
 - (a) Why must there be a vector $\vec{x} \in \mathbb{R}^3$ such that $B\vec{x} = 0$?
 - (b) Prove that AB (a 3×3 matrix) can never be invertible.
 - (c) Give an example to show BA (a 2×2 matrix) may be invertible.
- 2. Are the following subsets of \mathbb{R}^2 actually subspaces? Explain.
 - (a) $\{(x, y) \mid xy = 0\}$
 - (b) $\{(x, y) \mid x \text{ and } y \text{ are integers}\}$
 - (c) $\{(x, y) \mid x + y = 0\}$
 - (d) $\{(x, y) \mid x + y \ge 0\}$
- 3. Let T be a linear transformation with trivial kernel. Prove that if $T(\vec{x}) = T(\vec{y})$, then $\vec{x} = \vec{y}$. (Hint: use subtraction.) Such transformations T are called *one-to-one*.
- 4. Prove that if vectors $\vec{v}_1, \ldots, \vec{v}_n$ are linearly dependent, then one of these vectors is a linear combination of the others.
- 5. Prove that the span of vectors $\vec{v}_1, \ldots, \vec{v}_k$ in \mathbb{R}^m is always a subspace of \mathbb{R}^m .
- 6. Say $\vec{v}_1, \ldots, \vec{v}_k$ are linearly independent in \mathbb{R}^n . Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear. Show by example that $T(\vec{v}_1), \ldots, T(\vec{v}_k)$ need not be linearly independent. However, prove that these vectors are linearly independent if ker(T) is trivial.
- 7. Use Theorems from section 3.3 (or from class) to explain carefully why if V and W are subspaces with V contained inside of W, then $\dim V \leq \dim W$.