Math 312, Homework 2 (due Friday, Sep. 21)

Name: \qquad (if you choose to use this as a coversheet)

Reading

- Read chapter 2 of Bretscher; also pp. 106-109

Book problems

- Section 2.1, problems 28, 30, 44
- Section 2.2, problems 4, 20, 22, 32
- Section 2.3, problems 18, 38. Hint on 18: Let $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and set up the equation $A B=B A$. (Also: if you're rusty on matrix multiplication, please practice with problems $1-14$ as needed.)
- Section 2.4, problems 12, 20, 44, 76. (Also: if you're rusty on finding matrix inverses, please practice with problems $1-15$ as needed.)
- Section 3.1, problems 7, 9

Additonal problems

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Prove that T always sends the zero vector in \mathbb{R}^{n} to the zero vector in \mathbb{R}^{m}. (Hint: Whatever $T(\overrightarrow{0})$ is, call it \vec{w}. Compute $T(\overrightarrow{0}+\overrightarrow{0})$ in two different ways to conclude that \vec{w} is the zero vector.)
2. Let T be a linear transformation. Explain carefully why

$$
T\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}\right)=c_{1} T\left(\vec{v}_{1}\right)+c_{2} T\left(\vec{v}_{2}\right)+c_{3} T\left(\vec{v}_{n}\right) .
$$

(The same statement holds of course for n vectors and n scalars as well.)
3. Let S and T be linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2}. Suppose S sends \vec{e}_{1} to itself and sends \vec{e}_{2} to $\frac{1}{2} \vec{e}_{1}+\vec{e}_{2}$. Suppose T reflects vectors about the line $y=-x$.
a. Find the matrix A that represents S and the matrix B that represents T.
b. Draw pictures indicating where S and T each send the letter "F", like we did in class.
c. Draw pictures indicating where $S \circ T$ and $T \circ S$ each send the letter "F".
4. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T \circ T$ is the zero transformation (i.e., sends every vector to $\overrightarrow{0}$). You're not allowed to let T itself be the zero transformation!
5. Let A and B be $n \times n$ matrices. What's wrong with the formula $(A+B)^{2}=$ $A^{2}+2 A B+B^{2}$? Prove that if this equation is true for matrices A and B, then A and B commute.

