Math 312: Class meeting 10
 Some applications

Jeff Jauregui

September 26, 2012

Errors in transmission

- Situation: transmitting a binary data signal (0's and 1's) across some (noisy) channel.

Errors in transmission

- Situation: transmitting a binary data signal (0's and 1's) across some (noisy) channel.
- Errors (0s and 1s being randomly swapped) will occur.

Errors in transmission

- Situation: transmitting a binary data signal (0's and 1's) across some (noisy) channel.
- Errors (0s and 1s being randomly swapped) will occur.
- Examples: WiFi, cell phones, lasers reading DVDs, etc.

Errors in transmission

- Situation: transmitting a binary data signal (0's and 1's) across some (noisy) channel.
- Errors (0s and 1s being randomly swapped) will occur.
- Examples: WiFi, cell phones, lasers reading DVDs, etc.
- Problem: devise a scheme for errors to be detected, corrected automatically by receiver.

Naive solution 1

- One idea: sender repeats each bit (0 or 1) in segments of two.

Naive solution 1

- One idea: sender repeats each bit (0 or 1) in segments of two.
- Data [0 100$]$ would be encoded as $[00: 11$: 0 : 0 , etc.

Naive solution 1

- One idea: sender repeats each bit (0 or 1) in segments of two.
- Data [0 10 0 $]$ would be encoded as [0 0 : 11 : 0 0], etc.
- If recipient gets [0 0 : 111 : 1 0], for instance, they know an error occurred in third segment of message.

Naive solution 1

- One idea: sender repeats each bit (0 or 1) in segments of two.
 etc.
- If recipient gets [0 0 : 111 : 1 0], for instance, they know an error occurred in third segment of message.
- But they can't correct the error!

Naive solution 1

- One idea: sender repeats each bit (0 or 1) in segments of two.
- Data [0 10 0 $]$ would be encoded as [0 0 : 11 : 0 0], etc.
- If recipient gets [0 0 : 11 : 1 0], for instance, they know an error occurred in third segment of message.
- But they can't correct the error!
- We'll ignore possibility of multiple errors.

Naive solution 2

- Next idea: sender repeats each bit (0 or 1) in segments of three.

Naive solution 2

- Next idea: sender repeats each bit (0 or 1) in segments of three.
- Data [0 1100$]$ would be encoded as
[0 $000: 1111: 000]$, etc., and sent.

Naive solution 2

- Next idea: sender repeats each bit (0 or 1) in segments of three.
- Data [0 $\left.1 \begin{array}{ll}0 & 0\end{array}\right]$ would be encoded as [0 $000: 1111: 000]$, etc., and sent.
- If recipient gets [0 $00: 110: 0000$, for instance, they know an error occurred in second segment.

Naive solution 2

- Next idea: sender repeats each bit (0 or 1) in segments of three.
- Data [0 $\left.1 \begin{array}{ll}0 & 0\end{array}\right]$ would be encoded as [0 $000: 1111$: 0 0 0], etc., and sent.
- If recipient gets $[000: 110: 000]$, for instance, they know an error occurred in second segment.
- Second segment should have been 11 1, so message can be corrected.

Naive solution 2

- Next idea: sender repeats each bit (0 or 1) in segments of three.
- Data [0 110$]$ would be encoded as [0 $000: 1111$: 0 0 0], etc., and sent.
- If recipient gets $[000: 110: 000]$, for instance, they know an error occurred in second segment.
- Second segment should have been 11 1, so message can be corrected.
- The cost: requires 3 times as much data to send.

$(7,4)$ Hamming code

- Hamming codes: Richard Hamming 1950

$(7,4)$ Hamming code

- Hamming codes: Richard Hamming 1950
- " $(7,4)$ Hamming code" takes a 4 bit message, encodes it as 7 bits, requiring only $7 / 4=1.75$ times as much data.

$(7,4)$ Hamming code

- Hamming codes: Richard Hamming 1950
- " $(7,4)$ Hamming code" takes a 4 bit message, encodes it as 7 bits, requiring only $7 / 4=1.75$ times as much data.
- Can detect and correct single errors.

$(7,4)$ Hamming code

- Hamming codes: Richard Hamming 1950
- " $(7,4)$ Hamming code" takes a 4 bit message, encodes it as 7 bits, requiring only $7 / 4=1.75$ times as much data.
- Can detect and correct single errors.
- Setup: say the senders message is $x_{1}, x_{2}, x_{3}, x_{4}$ (each 0 or 1). Denote by the vector:

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Parity

- We'll use addition "mod 2", meaning:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0
\end{aligned}
$$

How it works

- Write the bits in a Venn diagram:

How it works

- Write the bits in a Venn diagram:

- ... then fill in the 3 circles with the sum of the bits inside that circle, taken mod 2.

Example

- If original message is [llll $\left.\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$, we have

Example

- If original message is [llll $\left.\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$, we have

- ... filled in as?

Example

- If original message is [llll $\left.\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$, we have

- ... filled in as?
- The sender sends 7 bits: the original four, plus the additional 3 "parity bits" (starting at top left, moving clockwise):

Example

- If original message is [llll $\left.\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$, we have

- ... filled in as?
- The sender sends 7 bits: the original four, plus the additional 3 "parity bits" (starting at top left, moving clockwise):
- [0 $\left.\begin{array}{lllllll}0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right]$ gets sent.

Correcting errors

- Now, recipient gets 7 bits, and fills out the picture in order. Example:

Correcting errors

- Now, recipient gets 7 bits, and fills out the picture in order. Example:

- They check the validity of each parity bit to locate errors.

Correcting errors

- Now, recipient gets 7 bits, and fills out the picture in order. Example:

- They check the validity of each parity bit to locate errors.
- In which position did error occur?

Correcting errors

- Now, recipient gets 7 bits, and fills out the picture in order. Example:

- They check the validity of each parity bit to locate errors.
- In which position did error occur?
- Corrected message is?

Matrix formalism: encoding

- Say $\vec{x} \in \mathbb{R}^{4}$ is original message.

Matrix formalism: encoding

- Say $\vec{x} \in \mathbb{R}^{4}$ is original message. Then $G \vec{x} \in \mathbb{R}^{7}$ is the 7-bit version, where

$$
G=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

Matrix formalism: encoding

- Say $\vec{x} \in \mathbb{R}^{4}$ is original message. Then $G \vec{x} \in \mathbb{R}^{7}$ is the 7-bit version, where

$$
G=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

- G is "code generator matrix"

Matrix formalism: decoding

- Recipient gets some $\vec{c} \in \mathbb{R}^{7}$.

Matrix formalism: decoding

- Recipient gets some $\vec{c} \in \mathbb{R}^{7}$. To perform error check, what they do is make sure, that $\bmod 2$:

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}+c_{5}=0 \\
& c_{1}+c_{2}+c_{4}+c_{6}=0 \\
& c_{2}+c_{3}+c_{4}+c_{7}=0
\end{aligned}
$$

Matrix formalism: decoding

- Recipient gets some $\vec{c} \in \mathbb{R}^{7}$. To perform error check, what they do is make sure, that mod 2 :

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}+c_{5}=0 \\
& c_{1}+c_{2}+c_{4}+c_{6}=0 \\
& c_{2}+c_{3}+c_{4}+c_{7}=0
\end{aligned}
$$

- In other words, they check $P \vec{c}=\overrightarrow{0}$ in \mathbb{R}^{3}, where

$$
P=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Matrix formalism: decoding

- Recipient gets some $\vec{c} \in \mathbb{R}^{7}$. To perform error check, what they do is make sure, that mod 2 :

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}+c_{5}=0 \\
& c_{1}+c_{2}+c_{4}+c_{6}=0 \\
& c_{2}+c_{3}+c_{4}+c_{7}=0
\end{aligned}
$$

- In other words, they check $P \vec{c}=\overrightarrow{0}$ in \mathbb{R}^{3}, where

$$
P=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- P is "parity check matrix".

Matrix formalism: decoding

- Recipient gets some $\vec{c} \in \mathbb{R}^{7}$. To perform error check, what they do is make sure, that mod 2 :

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}+c_{5}=0 \\
& c_{1}+c_{2}+c_{4}+c_{6}=0 \\
& c_{2}+c_{3}+c_{4}+c_{7}=0 .
\end{aligned}
$$

- In other words, they check $P \vec{c}=\overrightarrow{0}$ in \mathbb{R}^{3}, where

$$
P=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- P is "parity check matrix".
- If $P \vec{c} \neq \overrightarrow{0}$, recipient can deduce where error occurred.

Matrix formalism: decoding

- Recipient gets some $\vec{c} \in \mathbb{R}^{7}$. To perform error check, what they do is make sure, that mod 2 :

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}+c_{5}=0 \\
& c_{1}+c_{2}+c_{4}+c_{6}=0 \\
& c_{2}+c_{3}+c_{4}+c_{7}=0 .
\end{aligned}
$$

- In other words, they check $P \vec{c}=\overrightarrow{0}$ in \mathbb{R}^{3}, where

$$
P=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- P is "parity check matrix".
- If $P \vec{c} \neq \overrightarrow{0}$, recipient can deduce where error occurred.
- G, P can be viewed as linear transformations.

Matrix formalism: decoding

- Recipient gets some $\vec{c} \in \mathbb{R}^{7}$. To perform error check, what they do is make sure, that $\bmod 2$:

$$
\begin{aligned}
& c_{1}+c_{3}+c_{4}+c_{5}=0 \\
& c_{1}+c_{2}+c_{4}+c_{6}=0 \\
& c_{2}+c_{3}+c_{4}+c_{7}=0 .
\end{aligned}
$$

- In other words, they check $P \vec{c}=\overrightarrow{0}$ in \mathbb{R}^{3}, where

$$
P=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- P is "parity check matrix".
- If $P \vec{c} \neq \overrightarrow{0}$, recipient can deduce where error occurred.
- G, P can be viewed as linear transformations.
- Messages without errors can be thought of as image of G and kernel of P. How so?

Displaying 3D graphics

- Imagine n points $\left(x_{1}, y_{1}, z_{1}\right), \ldots\left(x_{n}, y_{n}, z_{n}\right) \in R^{3}$, connected by various line segments:

Displaying 3D graphics

- Imagine n points $\left(x_{1}, y_{1}, z_{1}\right), \ldots\left(x_{n}, y_{n}, z_{n}\right) \in R^{3}$, connected by various line segments:

- Viewer located along z-axis.

Displaying 3D graphics

- Imagine n points $\left(x_{1}, y_{1}, z_{1}\right), \ldots\left(x_{n}, y_{n}, z_{n}\right) \in R^{3}$, connected by various line segments:

- Viewer located along z-axis.
- Imagine points being projected onto a flat screen in $z=0$ plane.

Displaying 3D graphics

- Imagine n points $\left(x_{1}, y_{1}, z_{1}\right), \ldots\left(x_{n}, y_{n}, z_{n}\right) \in R^{3}$, connected by various line segments:

- Viewer located along z-axis.
- Imagine points being projected onto a flat screen in $z=0$ plane. Store points as a $3 \times n$ matrix:

$$
P=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n} \\
z_{1} & z_{2} & \cdots & z_{n}
\end{array}\right]
$$

Views

- Straight-on view looks like

Views

- Straight-on view looks like

- Can apply various linear transformations of \mathbb{R}^{3}, for instance

$$
S=\left[\begin{array}{lll}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \gamma
\end{array}\right]
$$

Views

- Straight-on view looks like

- Can apply various linear transformations of \mathbb{R}^{3}, for instance

$$
S=\left[\begin{array}{lll}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \gamma
\end{array}\right]
$$

- Matrix product " $S P$ " means apply S to each column.

Scaling example

- Here's an example

- Original view was:

Scaling example

- Here's an example

- Original view was:

- In this initial discussion, z coordinate doesn't factor in directly.

Rotations

- We can also rotate about x, y, and z axes. With $\theta=\pi / 2$:

Rotations

- We can also rotate about x, y, and z axes. With $\theta=\pi / 2$:

Rotations

- We can also rotate about x, y, and z axes. With $\theta=\pi / 2$:

Rotation about the y-axis

$\bar{\varepsilon}$

Rotations

- We can also rotate about x, y, and z axes. With $\theta=\pi / 2$:

Rotation about the y-axis

ε
Rotation about the z-axis

$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

Stereoscopic views

- By composing x, y, and z rotations, we can create oblique views on the object.

Stereoscopic views

- By composing x, y, and z rotations, we can create oblique views on the object.
- See handout.

