
Math 260 Exam 2 Jerry L. Kazdan
March 13, 2012 12:00 – 1:20

Directions This exam has two parts. Part A has 6 short answer questions (7 points each, so 42
points) whilePart B has 4 traditional problems (15 points each, so 60 points). Total: 102 points.
Neatness counts.
Closed book, no calculators, computers, ipods, cell phomes, etc – but you may use one 3′′×5′′ card
with notes on both sides.

Part A: Six short answer questions (7 points each, so 42 points).

1. Find a 3× 3 symmetric matrix A with the property that

〈X, AX〉 = −x2
1 + 6x1x2 − x1x3 + 2x2x3 + 3x2

2

for all X = (x1, x2, x3) ∈ R3 .

Solution: A :=

−1 3 −1
2

3 3 1
−1

2 1 0


2. Under what conditions on the constants a , b , c , and d is the following matrix A positive

definite?

A :=


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


Solution: Let X := (x1, x2, x3, x4) Then

〈X, AX〉 = ax2
1 + bx2

2 + cx2
3 + dx2

4 > 0 for all X 6= 0

if and only if a > 0, b > 0, c > 0, and d > 0.

3. Let B be an anti-symmetric n× n real matrix, so B∗ = −B . Show that 〈V, BV 〉 = 0 for all
V ∈ Rn .

Solution: 〈V, BV 〉 = 〈B∗V, V 〉 = −〈BV, V 〉 = −〈V, BV 〉 . Thus 2〈V, BV 〉 = 0 and hence
〈V, BV 〉 = 0.

4. Find the arc length of the segment of the helix X(t) := (cos 3t, 1− 4t, sin 3t), for 0 ≤ t ≤ π .

Solution: Arc length =
∫ π

0
‖X ′(t)‖ dt . But X ′(t) = (−3 sin 3t,−4, 3 cos 3t) so ‖X ′(t)‖2 =

9 sin2 3t + 16 + 9 cos2 3t = 25. Thus

Arc Length =
∫ π

0
5 dt = 5π.



5. Find some function u(x, y) that satisfies
∂2u

∂x∂y
= 4 cos(x + 2y)− 2xy .

Solution: First integrate with respect to x to find uy(x, y) = 4 sin(x + 2y) − x2y + g(x),
where the “constant” of integration, g(y), is any function of y . Now integrate with respect to
y :

u(x, y) =− 2 cos(x + 2y)− x2y2

2
+

∫
g(y) dy + h(x)

=− 2 cos(x + 2y)− x2y2

2
+ f(y) + h(x),

where f(y) and h(x) are any functions of their variables. Since the problem only asked for
“some function”, we can choose f(y) = 0 and h(x) = 0.

Note that we could have first integrated with respect to y .

6. Let v(s) be a smooth function of the real variable s and let u(x, t) := v(x + 3t). Show that u
satisfies the homogeneous partial differential equation ut − 3ux = 0.

Solution: Let v′ denote the derivative of v . Then by the chain rule ux(x, t) = v′(x + 3t) · 1
and ut(x, t) = v′(x + 3t) · 3. Thus 3ux(x, t) = ut(x, t) as desired.

Part B: Four traditional problems (15 points each, so 60 points).

B–1. In an experiment, at time t you measure the value of a quantity R and obtain the data:

t -1 0 1 2

R -1 1 1 -3

Based on other information, you believe this data should fit a curve of the form R = a+bt2 .

a) Write the (over-determined) system of linear equations you would ideally like to solve for
the unknown coefficients a and b .

Solution:

a + b =− 1
a + 0 = 1
a + b = 1

a + 4b =− 3
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b) Use the method of least squares to find the normal equations for the coefficients a and b .

Solution: Let A :=


1 1
1 0
1 1
1 4

 , V :=
(

a
b

)
, and w :=


−1

1
1

−3

 .

The normal equations are A∗AV = A∗w , that is,(
4 6
6 18

) (
a
b

)
=

(
−2
−12

)
.

c) Solve the normal equations to find the coefficients a and b .

Solution: These equations are

4a + 6b =− 2
6a + 18b =− 12

that is,
2a + 3b =− 1
a + 3b =− 2

The solution is a = 1, b = −1. Thus the equation of the least squares curve is R = 1− t2 .

B–2. Find and classify all the critical points of f(x, y, z) := x3 − 3x + y2 + z2 .

Solution: The critical points are where ∇f = 0, that is, 0 = fx = 3x2 − 3x , 0 = fy = 2y ,
and 0 = fz = 2z . Thus x = ±1, y = 0, and z = 0. The critical points are thus P1 := (1, 0, 0),
P2 = (−1, 0, 0).

To classsify these we use the second derivative (“Hessian”) matrix

f ′′(x, y, z) =

6x 0 0
0 2 0
0 0 2

 .

In particular,

f ′′(P1) = f ′′(1, 1, 1) =

6 0 0
0 2 0
0 0 2

 and f ′′(P2) = f ′′(−1, 1, 1) =

−6 0 0
0 2 0
0 0 2

 .

Since f ′′(P1) is positive definite, f has a local min at P1 . However, two of the diagonal
elements of f ′′(P2) have opposite sign so it is indefinite. Hence f has a saddle point at P2 .

B–3. For a certain rod of length π , the temperature u(x, t) at the point x at time t satisfies the
heat equation ut = uxx . Find all solutions of the special form

u(x, t) = w(x)T (t) for 0 ≤ x ≤ π

that satisfy the boundary conditions u(0, t) = 0 and u(π, t) = 0 for all t ≥ 0. [We seek the
non-trivial solutions, that is, other than the important but uninteresting solution u(x, t) ≡ 0.]
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Solution: Note that the boundary conditions imply 0 = u(0, t) = w(0)T (t) and 0 =
u(π, t) = w(π)T (t) for all t ≥ 0. Consequently w(0) = 0 and w(π) = 0.

Substituting u(x, t) = w(x)T (t) into the heat equation and separating variables we get

1
T (t)

dT (t)
dt

=
1

w(x)
d2w(x)

dx2
= α,

where α is a constant. Thus

w′′ = αw and
dT

dt
= αT.

We claim that α < 0 (this is a key step). To show this, multiply both sides of w′′(x) = αw(x)
by w(x) and integrate over the rod. Then integrate by parts and use the boundary conditions
w(0) = w(π) = 0 to get

α

∫ π

0
w(x)2 dx =

∫ π

0
w(x)w′′(x) dx = −

∫ π

0
w′(x)2 dx ≤ 0.

This already implies that α ≤ 0. However, if α = 0 then w′(x)2 = 0 so w(x) = constant.
But w(0) = 0. Thus w(x) ≡ 0. This gives the trivial solution u(x, t) ≡ 0 which we discard.
Consequently α < 0 so we write α = −λ2 .

Thus w′′(x)+λ2w(x) = 0 whose general solution is w(x) = A cos λx+B sinλx . The boundary
condition w(0) = 0 implies A = 0 while the boundary condition w(π) = 0 implies B sinλπ =
0. We exclude the possibility that B = 0 since this gives us the trivial solution u(x, t) ≡ 0.
Consequently, sinλπ = 0, so λ = k = 1, 2, . . . and α = −k2 so the solution of dT/dt = αT is
T (t) = Ce−k2t .

Collecting our results we have the special solutions

uk(x, t) = Ck sin(kx)e−k2t, k = 1, 2, . . . .

B–4. Say the equation f(X) := f(x, y, z) = 0 implicitly defines a smooth surface in R3 (an example
is the sphere x2 + y2 + z2 − 4 = 0). Let P ∈ R3 be a point not on this surface. Assume Q is
a point on the surface that is closest to P . Show that the vector from P to Q is orthogonal
to the tangent plane to the surface at Q .

[Suggestion: Let X(t) be a smooth curve in the surface with X(0) = Q . Then Q is the
point on the curve that is closest to P .]

Solution: Using the curve X(t), let h(t) := ‖X(t)−P‖2 . Since h(t) is minimized at t = 0,
then h′(0) = 0. Now h(t) = 〈X(t)− P, X(t)− P 〉 so

h′(t) = 〈X ′(t), X(t)− P 〉+ 〈X(t)− P, X ′(t)〉 = 2〈X ′(t), X(t)− P 〉.

At t = 0 this gives
0 = 〈X ′(0), Q− P 〉,
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that is, the vector Q − P is perpendicular to the vector X ′(0) that is tangent to the surface
at Q . Since ths is true for any tangent vector at Q , the vector Q− P is perpendiculat to the
whole tangent plane at Q .

Remark: You can also prove this result using Lagrange Multipliers.

Note: A common error was to take the derivative of ‖Q − P‖2 . This fails because P and
Q are specified points so the derivative of the constant ‖Q−P‖2 is zero for trivial reasons. It
gives no information.
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