Directions This exam has two parts. Part A has 6 short answer questions (7 points each, so 42 points) whilePart B has 4 traditional problems (15 points each, so 60 points). Total: 102 points. Neatness counts.
Closed book, no calculators, computers, ipods, cell phomes, etc - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Six short answer questions (7 points each, so 42 points).

1. Find a 3×3 symmetric matrix A with the property that

$$
\langle X, A X\rangle=-x_{1}^{2}+6 x_{1} x_{2}-x_{1} x_{3}+2 x_{2} x_{3}+3 x_{2}^{2}
$$

for all $X=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.
Solution: $A:=\left(\begin{array}{rrr}-1 & 3 & -\frac{1}{2} \\ 3 & 3 & 1 \\ -\frac{1}{2} & 1 & 0\end{array}\right)$
2. Under what conditions on the constants a, b, c, and d is the following matrix A positive definite?

$$
A:=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right)
$$

Solution: Let $X:=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ Then

$$
\langle X, A X\rangle=a x_{1}^{2}+b x_{2}^{2}+c x_{3}^{2}+d x_{4}^{2}>0 \quad \text { for all } \quad X \neq 0
$$

if and only if $a>0, b>0, c>0$, and $d>0$.
3. Let B be an anti-symmetric $n \times n$ real matrix, so $B^{*}=-B$. Show that $\langle V, B V\rangle=0$ for all $V \in \mathbb{R}^{n}$.

Solution: $\quad\langle V, B V\rangle=\left\langle B^{*} V, V\right\rangle=-\langle B V, V\rangle=-\langle V, B V\rangle$. Thus $2\langle V, B V\rangle=0$ and hence $\langle V, B V\rangle=0$.
4. Find the arc length of the segment of the helix $X(t):=(\cos 3 t, 1-4 t, \sin 3 t)$, for $0 \leq t \leq \pi$.

Solution: Arc length $=\int_{0}^{\pi}\left\|X^{\prime}(t)\right\| d t$. But $X^{\prime}(t)=(-3 \sin 3 t,-4,3 \cos 3 t)$ so $\left\|X^{\prime}(t)\right\|^{2}=$ $9 \sin ^{2} 3 t+16+9 \cos ^{2} 3 t=25$. Thus

$$
\text { Arc Length }=\int_{0}^{\pi} 5 d t=5 \pi
$$

5. Find some function $u(x, y)$ that satisfies $\frac{\partial^{2} u}{\partial x \partial y}=4 \cos (x+2 y)-2 x y$.

Solution: First integrate with respect to x to find $u_{y}(x, y)=4 \sin (x+2 y)-x^{2} y+g(x)$, where the "constant" of integration, $g(y)$, is any function of y. Now integrate with respect to y :

$$
\begin{aligned}
u(x, y) & =-2 \cos (x+2 y)-\frac{x^{2} y^{2}}{2}+\int g(y) d y+h(x) \\
& =-2 \cos (x+2 y)-\frac{x^{2} y^{2}}{2}+f(y)+h(x)
\end{aligned}
$$

where $f(y)$ and $h(x)$ are any functions of their variables. Since the problem only asked for "some function", we can choose $f(y)=0$ and $h(x)=0$.
Note that we could have first integrated with respect to y.
6. Let $v(s)$ be a smooth function of the real variable s and let $u(x, t):=v(x+3 t)$. Show that u satisfies the homogeneous partial differential equation $u_{t}-3 u_{x}=0$.

Solution: Let v^{\prime} denote the derivative of v. Then by the chain rule $u_{x}(x, t)=v^{\prime}(x+3 t) \cdot 1$ and $u_{t}(x, t)=v^{\prime}(x+3 t) \cdot 3$. Thus $3 u_{x}(x, t)=u_{t}(x, t)$ as desired.

Part B: Four traditional problems (15 points each, so 60 points).
$\mathrm{B}-1$. In an experiment, at time t you measure the value of a quantity R and obtain the data:

t	-1	0	1	2
R	-1	1	1	-3

Based on other information, you believe this data should fit a curve of the form $R=a+b t^{2}$.
a) Write the (over-determined) system of linear equations you would ideally like to solve for the unknown coefficients a and b.
Solution:

$$
\begin{aligned}
a+b & =-1 \\
a+0 & =1 \\
a+b & =1 \\
a+4 b & =-3
\end{aligned}
$$

b) Use the method of least squares to find the normal equations for the coefficients a and b. Solution: Let $A:=\left(\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 4\end{array}\right), \quad V:=\binom{a}{b}, \quad$ and $\quad w:=\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ -3\end{array}\right)$.
The normal equations are $A^{*} A V=A^{*} w$, that is,

$$
\left(\begin{array}{cc}
4 & 6 \\
6 & 18
\end{array}\right)\binom{a}{b}=\binom{-2}{-12}
$$

c) Solve the normal equations to find the coefficients a and b.

Solution: These equations are

$$
\begin{aligned}
4 a+6 b & =-2 \\
6 a+18 b & =-12 \quad \text { that is, } \quad
\end{aligned} \quad \begin{aligned}
2 a+3 b & =-1 \\
a+3 b & =-2
\end{aligned}
$$

The solution is $a=1, b=-1$. Thus the equation of the least squares curve is $R=1-t^{2}$.

B-2. Find and classify all the critical points of $f(x, y, z):=x^{3}-3 x+y^{2}+z^{2}$.
Solution: The critical points are where $\nabla f=0$, that is, $0=f_{x}=3 x^{2}-3 x, 0=f_{y}=2 y$, and $0=f_{z}=2 z$. Thus $x= \pm 1, y=0$, and $z=0$. The critical points are thus $P_{1}:=(1,0,0)$, $P_{2}=(-1,0,0)$.
To classsify these we use the second derivative ("Hessian") matrix

$$
f^{\prime \prime}(x, y, z)=\left(\begin{array}{ccc}
6 x & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

In particular,

$$
f^{\prime \prime}\left(P_{1}\right)=f^{\prime \prime}(1,1,1)=\left(\begin{array}{ccc}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \text { and } \quad f^{\prime \prime}\left(P_{2}\right)=f^{\prime \prime}(-1,1,1)=\left(\begin{array}{ccc}
-6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Since $f^{\prime \prime}\left(P_{1}\right)$ is positive definite, f has a local min at P_{1}. However, two of the diagonal elements of $f^{\prime \prime}\left(P_{2}\right)$ have opposite sign so it is indefinite. Hence f has a saddle point at P_{2}.
$\mathrm{B}-3$. For a certain rod of length π, the temperature $u(x, t)$ at the point x at time t satisfies the heat equation $u_{t}=u_{x x}$. Find all solutions of the special form

$$
u(x, t)=w(x) T(t) \quad \text { for } \quad 0 \leq x \leq \pi
$$

that satisfy the boundary conditions $u(0, t)=0$ and $u(\pi, t)=0$ for all $t \geq 0$. [We seek the non-trivial solutions, that is, other than the important but uninteresting solution $u(x, t) \equiv 0$.]

Solution: Note that the boundary conditions imply $0=u(0, t)=w(0) T(t)$ and $0=$ $u(\pi, t)=w(\pi) T(t)$ for all $t \geq 0$. Consequently $w(0)=0$ and $w(\pi)=0$.
Substituting $u(x, t)=w(x) T(t)$ into the heat equation and separating variables we get

$$
\frac{1}{T(t)} \frac{d T(t)}{d t}=\frac{1}{w(x)} \frac{d^{2} w(x)}{d x^{2}}=\alpha,
$$

where α is a constant. Thus

$$
w^{\prime \prime}=\alpha w \quad \text { and } \quad \frac{d T}{d t}=\alpha T .
$$

We claim that $\alpha<0$ (this is a key step). To show this, multiply both sides of $w^{\prime \prime}(x)=\alpha w(x)$ by $w(x)$ and integrate over the rod. Then integrate by parts and use the boundary conditions $w(0)=w(\pi)=0$ to get

$$
\alpha \int_{0}^{\pi} w(x)^{2} d x=\int_{0}^{\pi} w(x) w^{\prime \prime}(x) d x=-\int_{0}^{\pi} w^{\prime}(x)^{2} d x \leq 0 .
$$

This already implies that $\alpha \leq 0$. However, if $\alpha=0$ then $w^{\prime}(x)^{2}=0$ so $w(x)=$ constant. But $w(0)=0$. Thus $w(x) \equiv 0$. This gives the trivial solution $u(x, t) \equiv 0$ which we discard. Consequently $\alpha<0$ so we write $\alpha=-\lambda^{2}$.
Thus $w^{\prime \prime}(x)+\lambda^{2} w(x)=0$ whose general solution is $w(x)=A \cos \lambda x+B \sin \lambda x$. The boundary condition $w(0)=0$ implies $A=0$ while the boundary condition $w(\pi)=0$ implies $B \sin \lambda \pi=$ 0 . We exclude the possibility that $B=0$ since this gives us the trivial solution $u(x, t) \equiv 0$. Consequently, $\sin \lambda \pi=0$, so $\lambda=k=1,2, \ldots$ and $\alpha=-k^{2}$ so the solution of $d T / d t=\alpha T$ is $T(t)=C e^{-k^{2} t}$.
Collecting our results we have the special solutions

$$
u_{k}(x, t)=C_{k} \sin (k x) e^{-k^{2} t}, \quad k=1,2, \ldots .
$$

B-4. Say the equation $f(X):=f(x, y, z)=0$ implicitly defines a smooth surface in \mathbb{R}^{3} (an example is the sphere $x^{2}+y^{2}+z^{2}-4=0$). Let $P \in \mathbb{R}^{3}$ be a point not on this surface. Assume Q is a point on the surface that is closest to P. Show that the vector from P to Q is orthogonal to the tangent plane to the surface at Q.
[Suggestion: Let $X(t)$ be a smooth curve in the surface with $X(0)=Q$. Then Q is the point on the curve that is closest to P.]
Solution: Using the curve $X(t)$, let $h(t):=\|X(t)-P\|^{2}$. Since $h(t)$ is minimized at $t=0$, then $h^{\prime}(0)=0$. Now $h(t)=\langle X(t)-P, X(t)-P\rangle$ so

$$
h^{\prime}(t)=\left\langle X^{\prime}(t), X(t)-P\right\rangle+\left\langle X(t)-P, X^{\prime}(t)\right\rangle=2\left\langle X^{\prime}(t), X(t)-P\right\rangle .
$$

At $t=0$ this gives

$$
0=\left\langle X^{\prime}(0), Q-P\right\rangle,
$$

that is, the vector $Q-P$ is perpendicular to the vector $X^{\prime}(0)$ that is tangent to the surface at Q. Since ths is true for any tangent vector at Q, the vector $Q-P$ is perpendiculat to the whole tangent plane at Q.

Remark: You can also prove this result using Lagrange Multipliers.
Note: A common error was to take the derivative of $\|Q-P\|^{2}$. This fails because P and Q are specified points so the derivative of the constant $\|Q-P\|^{2}$ is zero for trivial reasons. It gives no information.

