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Skolem and pessimism about proof
in mathematics

BY PAUL J. COHEN

Department of Mathematics, Stanford University, Bldg. 380,
450 Serra Mall, Stanford, CA 94305-2125, USA

(pjosephcohen@yahoo.com)

Attitudes towards formalization and proof have gone through large swings during the
last 150 years. We sketch the development from Frege’s first formalization, to the
debates over intuitionism and other schools, through Hilbert’s program and the decisive
blow of the Gödel Incompleteness Theorem. A critical role is played by the Skolem–
Lowenheim Theorem, which showed that no first-order axiom system can characterize a
unique infinite model. Skolem himself regarded this as a body blow to the belief that
mathematics can be reliably founded only on formal axiomatic systems. In a remarkably
prescient paper, he even sketches the possibility of interesting new models for set theory
itself, something later realized by the method of forcing. This is in contrast to Hilbert’s
belief that mathematics could resolve all its questions. We discuss the role of new axioms
for set theory, questions in set theory itself, and their relevance for number theory. We
then look in detail at what the methods of the predicate calculus, i.e. mathematical
reasoning, really entail. The conclusion is that there is no reasonable basis for Hilbert’s
assumption. The vast majority of questions even in elementary number theory, of
reasonable complexity, are beyond the reach of any such reasoning. Of course this cannot
be proved and we present only plausibility arguments. The great success of mathematics
comes from considering ‘natural problems’, those which are related to previous work and
offer a good chance of being solved. The great glories of human reasoning, beginning with
the Greek discovery of geometry, are in no way diminished by this pessimistic view. We
end by wishing good health to present-day mathematics and the mathematics of many
centuries to come.

Keywords: proof; predicate; calculus; axiom system; model; Skolem paradox
On
1. Introduction

I should like to thank the organizers of the conference for inviting me to express
my ideas on the nature of mathematical proof. What I have to say may be
somewhat anachronistic, in that I shall review a debate that raged almost a
century ago, but which has been quiescent lately. Nevertheless, in light of what
has occurred, I believe that one can come to some reasonable conclusions about
the current state of mathematical proof. Most of the references to the older
Phil. Trans. R. Soc. A (2005) 363, 2407–2418

doi:10.1098/rsta.2005.1661
Published online 12 September 2005
e contribution of 13 to a Discussion Meeting Issue ‘The nature of mathematical proof ’.

2407 q 2005 The Royal Society

http://rsta.royalsocietypublishing.org/


P. J. Cohen2408

 on April 22, 2012rsta.royalsocietypublishing.orgDownloaded from 
literature are to be found in the excellent collection ‘From Frege to Gödel’,
edited by Jean van Heijenoort (1971).

The title of my talk alludes to both the work of Thoralf Skolem, and, perhaps
even more, to the conclusions he came to at a rather early stage of the
development of mathematical logic. The work is, of course, the famous
Lowenheim–Skolem Theorem, for which Skolem gave a simplified proof, and
which is undoubtedly the most basic result about general axiomatic systems. It
can be given various formulations, but the form which Skolem himself attributes
to Lowenheim is that ‘every first order expression is either contradictory or
satisfiable in a denumerably infinite domain’ (Skolem 1970). As Skolem showed,
there is a natural extension to the case of countably many such expressions.
‘Contradictory’ here is defined by reference to the rules of the predicate calculus,
i.e. normal mathematical reasoning. The startling conclusion that Skolem drew is
the famous Skolem Paradox, that any of the usual axiom systems for set theory
will have countable models, unless they are contradictory. Since I will not assume
that my audience are all trained logicians, I point out that though the set of reals
from the countable model is countable seen from outside, there is no function
‘living in the model’ which puts it in one-to-one correspondence with the set of
integers of the model. This fact and other considerations led Skolem to this
viewpoint:
Phil. T
I believed that it was so clear that axiomatization in terms of sets was not a
satisfactory ultimate foundation of mathematics, that mathematicians would,
for the most part, not be very much concerned by it.
The view that I shall present differs somewhat from this, and is in a sense more
radical, namely that it is unreasonable to expect that any reasoning of the type
we call rigorous mathematics can hope to resolve all but the tiniest fraction of
possible mathematical questions.

The theorem of Lowenheim–Skolem was the first truly important discovery
about formal systems in general, and it remains probably the most basic. It is not
a negative result at all, but plays an important role in many situations. For
example, in Gödel’s proof of the consistency of the Continuum Hypothesis, the
fact that the hypothesis holds in the universe of constructible sets is essentially
an application of the theorem. In Skolem’s presentation of the basic theorem, it
reads like a plausible, natural theorem in mathematics, unencumbered by the
jargon prevalent both in many papers of the time, and, above all, in the
contemporary philosophical debates concerning the foundations of mathematics.
As the reader can verify by referring to van Heijenoort’s reference book, all of
Skolem’s writings on logic and set theory have a clarity and simplicity which is
striking. Even now it is truly rewarding to read these papers and reflect on them.

Now, no discussion of proof can fail to refer to the Incompleteness Theorem of
Gödel. The result states that no reasonable system of mathematics can prove its
own consistency, where the latter is stated as a theorem about proofs in its own
formal system, and hence can be construed as a result in combinatorics or
number theory. The Incompleteness Theorem is a theorem of mathematics, and
not a philosophical statement. Thus, in this sense, it is unassailable, but, in
another sense, since it refers to such a specific question, it is not really relevant to
the question which I am addressing in this talk, namely the extent to which
problems in mathematics can reasonably be expected to be settled by
rans. R. Soc. A (2005)
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mathematical reasoning. It is, of course, the first, and perhaps the only, proved
statement supporting the basic pessimism of Skolem’s viewpoint.

Let me begin by recalling some facts concerning the development of the
axiomatic method, which I am sure are familiar to all of you. With the
publication of Frege’s epic work ‘Begriffschrift’ in 1879, the notion of a formal
system was given a definitive form. Important related work was done by Boole,
and Pierce, and later Peano presented a similar approach, but with Frege’s work,
for the first time in the history of human thought, the notion of logical deduction
was given a completely precise formulation. Frege’s work not only included a
description of the language (which we might nowadays call the ‘machine
language’), but also a description of the rules for manipulating this language,
which is nowadays known as predicate calculus. Now the Greeks had introduced
the axiomatic method, and Leibnitz had speculated about a universal deductive
mechanism. Thus, as with many great discoveries, the precise formulation, of
what is meant by a formal system, grew gradually in the collective unconscious,
and so perhaps did not appear to many people at the time as a breakthrough.
Certainly no radically new ideas were introduced, nor any particularly difficult
problems overcome. But this was a major landmark. For the first time one could
speak precisely about proofs and axiomatic systems. The work was largely
duplicated by others, e.g. Russell and Whitehead, who gave their own
formulations and notations, and even Hilbert made several attempts to
reformulate the basic notion of a formal system. The variety of such attempts
relates to the problem of clearly distinguishing between the axioms which are
assumed as the starting point of a theory and the methods of deduction which are
to be used. The Gödel Completeness Theorem, which many people regard as
implicit in Skolem’s work, explicitly shows that there is no ambiguity in the rules
of deduction. This is in marked contrast to the Incompleteness Theorem, which
shows that no reasonable axiom system can be complete.

Alongside these developments, there raged a lively debate, continuing almost
to the onset of World War 2, about the ultimate validity of mathematics. This
debate saw the emergence of formalism, logicism and intuitionism as competitors
for the correct foundation of mathematics. I will briefly discuss these competing
philosophies, noting at the outset that each seems to focus on proofs rather than
models. In this respect Skolem’s ideas were in sharp contrast to those of most of
his contemporaries. I believe that today the situation is rather the reverse, due in
part to my own work, showing how many models of set theory can be constructed
using the notion of forcing (Cohen 1966). Indeed, Skolem even foresaw, in his
1922 paper, the construction of new models of set theory, for there he states:
Phil. T
‘It would in any case be of much greater interest if one could prove that a new
subset of Z could be adjoined without giving rise to contradictions; but this
would probably be very difficult.’ As I said, his interest in models was perhaps
ahead of his time, so let me discuss now some of the common viewpoints on
foundations.
First, I would mention the belief of Hilbert that the beautiful structure of
mathematics, erected in the course of centuries, was in some sense sacrosanct,
not to be challenged. Indeed, he felt that mathematical knowledge was our
birthright, and that in principle human reasoning could decide all mathematical
questions. He felt it necessary to defend, at all costs, mathematics from the
rans. R. Soc. A (2005)
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attacks of such as Kronecker and Brouwer. In his 1904 article he summarizes the
viewpoints of Kronecker, Helmholtz, Christoffel, Frege, Dedekind and Cantor,
finding deficiencies in their viewpoints, and offering his own treatment as an
alternative. I am not very impressed by his efforts in this paper, but greatly
admire the tenacity with which he defends the inviolability of mathematical
reasoning. Perhaps he himself realized the difficulties of giving any completely
satisfactory foundation, and so retreated, if I may use the expression, to a more
modest position, that at least if we regard mathematics as a formal game played
with symbols we should be able to show that the game is consistent, This became
known as the Hilbert Program, and though many attempts were made not too
much was accomplished, the reasons for which became clear when Gödel proved
his Incompleteness Theorem. The Program survived in some form, under the
name of Proof Theory, and we shall later refer to Gentzen’s outstanding result in
that discipline. Hilbert’s goal was informally outlined, since what was meant by a
consistency proof was not entirely explicit. In his basic belief that beyond any
doubt mathematics was referring to an existing reality, and that it must be made
secure from all philosophical attacks, he undoubtedly enjoyed the support of the
vast majority of mathematicians.

Second, there arose a school that questioned methods of proof involving what
may be called non-constructive reasoning. Foremost proponents were Brouwer
and Weyl, both very distinguished mathematicians. The objections strike at the
use of the classical predicate calculus, rejecting for example the use of Excluded
Middle and related non-constructive proofs of existence. The school of
Intuitionism probably never obtained much support among working mathema-
ticians, but it has repeatedly resurfaced in various forms, for example in the work
of Errett Bishop on constructive analysis. In some forms, the school may even
reject the use of formal systems entirely, on the grounds that they are irrelevant
for mathematical reasoning.

A recurring concern has been whether set theory, which speaks of infinite sets,
refers to an existing reality, and if so how does one ‘know’ which axioms to
accept. It is here that the greatest disparity of opinion exists (and the greatest
possibility of using different consistent axiom systems).
2. Questions concerning the predicate calculus

The formulation, by Frege and others, of mathematics as a formal system, must
certainly be regarded as a milestone in the history of human thought. In a way it
is a most curious achievement, in that it merely codified what was generally
known. However, as a completed structure, reducing mathematical thought to
what we today would call a machine language, and thereby eliminating any
vagueness, it was a historic step. Perhaps Frege and the early workers did not
completely separate the formalization of logical thinking and the rules of logical
deduction. Today we clearly do so, and these rules are known as the predicate
calculus. Concerning the predicate calculus itself, there is no controversy, though
the intuitionists and others would restrict its use. The work of Lowenheim and
Skolem, and the Completeness Theorem of Gödel, indeed show that one has an
invariant, natural notion. Let me state these results now.
Phil. Trans. R. Soc. A (2005)
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First, I review the formulation of the language. One has symbols for relations
(of various arities) between objects. We have the logical connectives, the
quantifiers, and some helpful symbols such as parentheses, commas and
subscripts, and finally the symbols for individual variables and constants. The
rules for manipulation of the connectives are sometimes called the Boolean or
propositional calculus. Much more powerful, in the sense that they contain the
crux of mathematical reasoning, are the quantifiers. These are the existential
quantifier (‘there exists’) and the universal quantifier (‘for all’). The rules of
propositional calculus are elementary and well known. The key step in
mathematical thinking is that if a statement asserts that there exists an x such
that a certain property A(x) holds then we invent a name for such an object, and
call it a constant, and can then form sentences with it.

Conversely, if a universal statement asserts that A(x) holds for all x then we
can deduce A(c) for all constants. For example, if we have a constant positive
real number a, and we know square roots exist for general positive reals, then we
invent the symbol b for a square root of A.

Viewed this way, the rules become extremely transparent, if one takes care to
avoid clash of constants and the like. The fundamental discovery of Lowenheim–
Skolem, which is undoubtedly the greatest discovery in pure logic, is that the
invention (or introduction) of ‘constants’ as in predicate calculus, is equivalent to
the construction of a ‘model’ for which the statements hold. More precisely, if the
use of predicate calculus does not lead to a contradiction on the basis of a set S of
sentences, then repeated use of the rules will result in a model for the system S.
Moreover, the method ensures that we get a countable model if S is countable.
And thus we get to the Skolem ‘Paradox’ that if a first-order system of axioms is
consistent then it has a countable model, because all current systems of set
theory have countably many primitives.

As an aside, I remark that the work received amazingly little attention. Indeed
Skolem remarks that he communicated these results to mathematicians in
Gottingen, and was surprised that, despite this revealed ‘deficiency’ in the
axiomatic method, there still existed, in his opinion, an unwarranted faith that
the axiomatic method can capture the notion of mathematical truth. This is the
pessimism to which I refer in the title. Later I shall refer to an even deeper
pessimism, which has found little expression in the literature.

Skolem wrote in a beautiful, intuitive style, totally precise, yet more in the
spirit of the rest of mathematics, unlike the fantastically pedantic style of Russell
and Whitehead. Thus, Hilbert even posed as a problem the very result that
Skolem had proved, and even Gödel, in his thesis where he proved what is known
as the Completeness Theorem, does not seem to have appreciated what Skolem
had done, although in a footnote he does acknowledge that ‘an analogous
procedure was used by Skolem’. A possible explanation lies in the fact that
Skolem emphasized models, and was amazingly prescient in some of his remarks
concerning independence proofs in set theory. A discussion of the priority
question can be found in the notes to Gödel’s Collected Works (Gödel 1986).
Gödel was undoubtedly sincere in his belief that his proof was in some sense new,
and in view of his monumental contributions I in no way wish to find fault with
his account. What is interesting is how the more philosophical orientation of
logicians of the time, even the great Hilbert, distorted their view of the field and
its results. When Gödel showed, in his Incompleteness Theorem, that the Hilbert
Phil. Trans. R. Soc. A (2005)
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Program was doomed, Hilbert (as far as I can find out from the records) did not
even invite him to present his results in Gottingen. Gödel did not have a
permanent position, and it was only due to the perspicacity of American
mathematicians, who understood the significance of his work, that he was
eventually appointed to the Institute for Advanced Study at Princeton.

So what are the disputes involving the rules of logic, given that the
Completeness Theorem seems to say that they account for all correct reasoning
in first-order logic? I will not attempt to categorize the various schools in this
dispute, nor their philosophical principles. But I think that one can safely say
that the differences involve the notion of constructivity, and the restriction to
existence proofs based on constructive reasoning. Many people devoted their
efforts to developing various parts of mathematics in a constructive manner.
I think that for many the crucial issue is already present in the most basic part of
mathematics, number theory. Since classical set theory is non-constructive
almost by definition, in that it speaks of infinite sets, one hardly expects
constructive ideas to be successful here. (Of course Gödel, in his epoch-making
proof of the consistency of the Continuum Hypothesis and the Axiom of Choice,
does use a notion of ‘constructibility’, but this is in an extended sense involving
reference to ordinals, and thus is entirely natural within set theory.)

In number theory, most results are constructively obtained, even if it may
require some work to see this. Let me give what I believe to be the first example
of a truly non-constructive proof in number theory, so that the reader, if not a
logician, will be exposed to some of the subtleties involved. This is the famous
theorem of Skolem’s compatriot, Thue, extended by Siegel, and in a sense
definitively completed by Roth. It says that an algebraic number can have only
finitely many ‘good’ approximations by rational numbers. There is no need to
specify the meaning of ‘good’ here, the basic idea being that the error in the
approximation should be less than a certain function of the denominator of the
approximating rational. The theorem has as a consequence that certain
polynomial equations in two variables have only finitely many integral solutions.

Now, all the classical proofs are totally ‘elementary’ (though ingenious), and
are constructive except in the very last lines of the proof. Thue showed that there
could not be two approximations p/q and p 0/q 0, where both q and q 0 are greater
than a number c (constructively given), and q 0 greater than a constructively
given power of q. Now he draws the conclusion that there can be only finitely
many good approximations, since if p/q is given there is a bound for all other
approximations p 0/q 0. This is a perfectly correct deduction, but if one does not
know one solution one is in no position to bound the others. This is a most
difficult problem, and, though Baker’s work has yielded constructive estimates in
some cases, one seems far from constructive bounds in general. Since the time of
Thue, other examples have been found, though perhaps no more than a dozen. Of
course one has no proof that constructive bounds do not exist. Even if one is
uncertain about the exact limits of the notion, one can, and does, ask whether
there are general recursive bounds, or better primitive recursive ones.

Since I do not share the intuitionist ideology, or any of its variants, I will not
raise the objections that they would raise, but clearly every mathematician must
feel a certain unease about the above proof. It is simply desirable to have a more
constructive proof.
Phil. Trans. R. Soc. A (2005)
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There are people who are more extreme, and who claim that any inductive
proof (such as the above) based on predicates with too many quantifier changes
(so that no instance is immediately verifiable) should not be allowed. The most
extreme view, held by at least one mathematician at a respectable university, is
that eventually a contradiction will be found even in elementary number theory.

Let me say briefly why I cannot accept such limitations on the use of the
predicate calculus. The reason lies in the very procedures of the predicate
calculus, because in a sense every statement is proved by contradiction. The form
of the proof may vary, but, in essence, the Completeness Theorem says that if a
set of statements does not lead to a contradiction it is satisfiable. So, to show that
something is valid, i.e. that it is necessarily satisfied, one must show that the
assumption of its negation leads to a contradiction.

Since I shall refer to this procedure again later, let me emphasize in slightly
more detail what the rules are. Using elementary rules one can bring every
statement into prenex form. Something of prenex form will be of one of the forms
‘for all x, A(x)’ or ‘there exists x such that A(x)’, where A itself may have other
quantifiers, and constants which have been introduced before. In the case of ‘for
all x, A(x)’ one can add to the list from which one is trying to deduce a
contradiction all ‘A(c)’. In the case of ‘there exists x such that A(x)’ one adds
correspondingly ‘A(c)’ for a new constant. If there is a contradiction derivable
from our original assumption, then it will be revealed after finitely many
applications of these rules of procedure, and at that point the contradiction will
be obtainable by propositional calculus, as all the prenex quantifiers will have
been stripped off. More specifically, as Skolem points out explicitly, we look at all
the original undefined relations, and substitutions got by using the constants
introduced at the various stages, and we will eventually be unable to assign
consistently truth-values to the quantifier-free formulas produced by our
procedure. Conversely, and this is only slightly harder to see, if we can always
find truth assignments that work, we are in effect constructing a model of the
original set of sentences. There are technical details involving revisiting
requirements over and over, but these are not difficult. I refer the reader to
Skolem’s original paper for an intuitive explanation.

Now it is clear to me that if a contradiction is obtained the original statement
must be ‘false’. Of course the intuitionist might argue that this is not good
enough, that one wants more than a proof of contradiction from classical logic. I
can only reply that in the usual, everyday mathematics, as practiced by the vast
majority of mathematicians, all proofs proceed by contradiction. This may be
surprising at first sight, but thinking about the above sketch of the Completeness
Theorem will show that this is exactly what is done in all proofs. In my final
comment, where I shall present a ‘pessimistic’ view, it is important that one
understands the method allowed by the predicate calculus.
3. Consistency questions

During the period of the great debate, between 1910 and 1920, there emerged the
Formalist School associated with Hilbert. My impression is that Hilbert shared
the viewpoint of ‘naive’ mathematicians, that is, that existing mathematics, with
its notion of proof, corresponded to a real world. And yet, in a sense formalism
Phil. Trans. R. Soc. A (2005)
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asserts the opposite. Hilbert wished to secure mathematics from the attacks of
intuitionists and others, and therefore proposed as a minimal program to prove
that formalized mathematics was consistent. No doubt this appeared at the time
to be a reasonable goal, and one could even have hoped that the consistency
proof might be done within elementary combinatorial mathematics (from this
point of view mathematics could be construed as a combinatorial game). An
accompanying idea was more daring, namely that such a combinatorial analysis
might even result in a decision procedure, i.e. a method of deciding whether a
given statement could be proved or not, or, even more ambitiously, for deciding
the truth value of the statement in question.

This hope was of course shattered by the Gödel Incompleteness Theorem,
which asserts that no reasonably complex system can prove its own consistency,
unless it is inconsistent, in which case everything is provable and the system is
useless. My main thesis here, which I shall discuss at the end of my lecture, is
that the premise of the Hilbert program is more profoundly untrue. I claim that
mathematics can prove only an incredibly small proportion of all true
statements. But for now I discuss some technical issues in Proof Theory.

The proof of Incompleteness can be formulated in different, essentially
equivalent, ways. In particular, it is closely related to the notion of recursive or
computable function, and motivated the large subject of recursive function
theory, so that one cannot regard Gödel’s result as purely negative.

A technical subject, Proof Theory, arose, with one of its goals to understand
the fine detail of unprovability of consistency. For a given theory, one seeks a
combinatorial principle which is natural and allows one to prove consistency.
The first, and still most striking, results are those of Gentzen (1969), who
analysed the consistency strength of elementary number theory (first-order
Peano arithmetic). Since elementary number theory would seem to be need in
any kind of combinatorial analysis, it may seem silly to use number theory to
prove number theory is consistent. However, Gentzen’s elegant work is not
circular, and can be formulated so as to yield precise information about proofs in
elementary number theory. Let me sketch the idea of his proof, in my own
version which I intend to publish some day.

Let us consider (in number theory) a proof P of a contradiction. In our
discussion of the rules of deduction, we said that there are various possibilities,
all equivalent. Now we must make matters precise. It is most natural to regard
the proof as a division of cases. This means that, in various stages of the proof,
we consider a division into A and not A, and regard the proof as a tree, such that
starting from the top of the tree, quoting the axioms of number theory, and
allowing for the division into branches, we arrive at a situation where, allowing
for invention and substitution of constants as described, we have a contradiction
in every branch, among the statements involving constants alone. We also allow
Boolean manipulations in the usual way. Thus a proof of a contradiction becomes
a tree, with a contradiction in every branch. Now, the branch structure is
important, because of the structure of the axioms of number theory. The key
axiom is the Axiom of Induction. Really this is a countable set of axioms, with
one instance for each property A(n) involving only one free variable n. Such an
instance states that one of three possibilities holds:
either

A(0) is false
Phil. Trans. R. Soc. A (2005)
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or
for some n, A(n) is true and A(nC1) is false

or
A(n) is true for all n.

Clearly this branching is an essential feature of induction.
The idea behind Gentzen’s proof is to go from P to another proof P 0 of

contradiction, with a simpler tree structure.
How to simplify the proof ? Well, in any induction branching as above, the

easiest branch to investigate is the third, since it says that something is true for
all n and does not assert the existence of any particular constant. Briefly, we go
down the tree and wait till we encounter a particular integer, say 5, where A(5)
occurs. But then induction up to 5 is obvious and can be replaced by five cases of
the induction hypothesis. This has to be done carefully. However, one sees that in
at least one branch no constants are created, except particular numerals such as
5 or 7. In this way the use of the induction axiom can be eliminated in at least
one case.

Now, assuming that this reduction from P to P 0 is defined, the question is
whether the new proof of a contradiction is simpler. The set of all finite trees can
be ordered in a simple manner, namely, starting from the first node of a tree, we
compare two trees by comparing the branches of the trees, assuming by
induction that tree whose depth is one less have already been ordered. We use
the usual lexicographic ordering. Now, if we define things correctly, we can show
that indeed the order of the tree goes down each time we eliminate a single use of
induction. This ordering is a well-ordering, and it corresponds to the ordinal e0,
which can also be defined as the limit of un as n goes to u, where u1 is u, and
unC1 is uun . From Gödel’s Theorem it follows that either we cannot formulate
this kind of induction in the system, or we can, but we cannot prove it. The latter
is the case, and in this way we reach a plausible combinatorial principle just out
of reach of elementary number theory, and one from which one can prove the
consistency of elementary number theory in an elementary way. Proof Theory
has gone on to seek analogous principles for more complex systems, e.g.
fragments of set theory.
4. Set theory, the ultimate frontier

At about the same time as Frege was developing the first universal formal
system, Cantor was developing the foundations of mathematics as based on set
theory. More precisely, it can be said that Cantor realized that set theory was
a legitimate area of study, perhaps not realizing that it was the basis of all
mathematics. In any event, Frege made an attempt to axiomatize a universal
‘set theory’, and made a mistake by allowing the existence of the set of all
sets, thereby getting a contradiction. One normally attributes to Zermelo the
first axiomatization of set theory, in more or less the form that we consider
today. However, the system was still vaguely defined, and again it was Skolem
who pointed out the deficiencies (Fraenkel did so too, in a less precise way).
This gives the system now known as Zermelo–Fraenkel set theory.

The development of set theory has been largely separate from that of the
rest of mathematics, except perhaps for considerations around the Axiom of
Phil. Trans. R. Soc. A (2005)
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Choice. Nevertheless, mathematicians have as a rule regarded the problems
of set theory as legitimate mathematical questions. The Continuum
Hypothesis, despite the independence results, remains an object of
speculation for set theorists.

It is in set theory that we encounter the greatest diversity of foundational
opinions. This is because even the most devoted advocates of the various new
axioms would not argue that these axioms are justified by any basic ‘intuition’
about sets. Let me give some examples of the scope of such axioms.

One may vary the rank of sets allowed. Conventional mathematics rarely
needs to consider more than four or five iterations of the power set axiom applied
to the set of integers. More iterations diminish our sense of the reality of the
objects involved.

One can attempt to vary the properties allowed in the comprehension axiom,
while dodging the Frege problem.

Axioms of infinity assert the existence of large cardinals whose existence
cannot be proved in the Zermelo–Fraenkel system. The earliest example is that
of inaccessible cardinals, and more recently one has considered much larger
cardinals whose existence has remarkable consequences even for real analysis.
These kinds of axioms can be extended indefinitely, it seems, and, despite the
interest of their consequences, the reality of the cardinals involved becomes more
and more dubious. The same can be said for more exotic axioms, of determinacy
type, despite the remarkable connections now known between their consistency
strength and that of large cardinals.

So we come now to one of the most basic questions. Does set theory, once we
get beyond the integers, refer to an existing reality, or must it be regarded, as
formalists would regard it, as an interesting formal game? In this sense, we are
going beyond the scope of the conference, which concerns proof. Rather we are
questioning the very sense of some things which are proved. I think that for most
mathematicians set theory is attractive, but lacking the basic impact of
arithmetic. There is almost a continuum of beliefs about the extended world of
set theory.

A typical argument for the objective reality of set theory is that it is obtained
by extrapolation from our intuitions of finite objects, and people see no reason
why this has less validity. Moreover, set theory has been studied for a long time
with no hint of a contradiction. It is suggested that this cannot be an accident,
and thus set theory reflects an existing reality. In particular, the Continuum
Hypothesis and related statements are true or false, and our task is to resolve
them.

A counter-argument is that the extrapolation has no basis in reality. We
cannot search through all possible sets of reals to decide the continuum
hypothesis. We have no reason at all to believe that these sets exist. It is simply
an empirical fact that no contradiction has been found.

Clearly both points of view have their strengths and weaknesses. Through
the years I have sided more firmly with the formalist position. This view is
tempered with a sense of reverence for all mathematics which has used set
theory as a basis, and in no way do I attack the work which has been done
in set theory. However, when axiom systems involving large cardinals or
determinacy are used, I feel a loss of reality, even though the research is
ingenious and coherent. In particular, a strong defect of the first view, for
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me, is the idea that if mathematics refers to a reality then human thought
should resolve all mathematical questions. This leads me to my final section,
on the ultimate pessimism.
5. The ultimate pessimism deriving from Skolem’s views

Skolem, in his papers, was so struck by the existence of non-isomorphic models of
all but the most trivial axiom systems that he was led to doubt the relevance of
any mathematical axiom system to the philosophical questions concerning
foundations of mathematics. For example, he pointed out the existence of
countable models of set theory. He seems to have been the first clearly to
emphasize models rather than methods of proof. Whether or not he believed in
an absolute model of set theory, which was beyond all attempts to describe it by
axioms, is not clear to me. But certainly he was aware of the limitations on what
could be proved. In a remarkable passage, he even discusses how new models of
set theory might be constructed by adding sets having special properties,
although he says he has no idea how this might be done. This was exactly the
starting point of my own work on independence questions, although I was totally
unaware that Skolem had considered the same possibility. It always seemed to
me that it was futile to adopt the proof-theoretic approach and analyse the
structure of proofs. Even if the formalist position is adopted, in actual thinking
about mathematics one can have no intuition unless one assumes that models
exist and that the structures are real.

So, let me say that I will ascribe to Skolem a view, not explicitly stated by
him, that there is a reality to mathematics, but axioms cannot describe it. Indeed
one goes further and says that there is no reason to think that any axiom system
can adequately describe it.

Where did the confidence, expressed so vividly by Hilbert, that all questions
must be resolved, come from? One view that has struck me, ever since my
earliest encounters with mathematics, originates with the Greeks, and Euclid in
particular. Here for the first time we see the power of the human intellect being
brought to bear not only on mathematics, but also on physics and astronomy.
What a fantastic thrill it must have been to live through this era and enjoy the
escape from superstition and primitive beliefs, and the sudden bright light
dawning of the triumph of reason alone! We have all felt this thrill, encountering,
at an early age, Euclid and the wonderful beauty and completeness of his
geometric system. Just a hundred years ago even the Pythagoras Theorem was
regarded as a marvel of deductive reasoning, and books were published
containing many proofs.

But let us recall Skolem’s theorem. How does one actually proceed in a proof ?
After a finite stage one invents symbols for the objects that are known to exist
under a certain assumption A. Also one makes finitely many substitutions of the
constants into universal statements, and repeats this in some dovetailing
procedure. Then one sees if there is a propositional contradiction in what is now
known about those finitely many constants. For example, suppose one wish to
disprove (and thereby prove the negation of) some statement about primes. If
one is working in number theory, one will be able to divide into cases, according
to the principle of induction outlined above. But, in essence, all one can do is run
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a check on finitely many integers derived from the hypothesis. With luck, we
reach a contradiction, and thereby prove something. But suppose one asks an
unnatural statement about primes, such as the twin primes question. Perhaps on
the basis of statistical considerations, we expect the primes to satisfy this law.
But the primes seem rather random, and in order to prove that the statistical
hypothesis is true we have to find some logical law that implies it. Is not it very
likely that, simply as a random set of numbers, the primes do satisfy the
hypothesis, but there is no logical law that implies this? Looked at from the point
of view of the Skolem construction, it would seem that we can run checks, but
they may be hopelessly weak in determining the truth.

Now, one can ask, how does the introduction of higher axioms of infinity
(perhaps having analytic implications) affect whether the statement can be
proved. Indeed, doesn’t the Gödel Incompleteness Theorem show exactly that
the consistency of a given system, which is a combinatorial, or number-theoretic,
statement, gets resolved by passing to a higher infinity? Will not the use of more
and more complicated set-theoretic axioms resolve more and more arithmetic
statements?

My response is twofold. One, the above is a rather idealistic hope. The only
statements of arithmetic, resolved by higher set theory, which are known today,
are basically consistency statements or close relatives. In a sense the higher
systems almost assume the principles we want proved. There is no intuition as to
why the consideration of the higher infinite should bring us closer to solving
questions about primes. Secondly, how far can we go by extending set-theoretic
axioms? As said before, one rapidly gets removed from intuition, and we have no
idea at the outset how to relate the axioms to primes.

Therefore, my conclusion is the following. I believe that the vast majority of
statements about the integers are totally and permanently beyond proof in any
reasonable system. Here I am using proof in the sense that mathematicians use
that word. Can statistical evidence be regarded as proof ? I would like to have an
open mind, and say ‘Why not?’. If the first ten billion zeros of the zeta function
lie on the line whose real part is 1/2, what conclusion shall we draw? I feel
incompetent even to speculate on how future generations will regard numerical
evidence of this kind.

In this pessimistic spirit, I may conclude by asking if we are witnessing the end
of the era of pure proof, begun so gloriously by the Greeks. I hope that
mathematics lives for a very long time, and that we do not reach that dead end
for many generations to come.
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